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2 Departament d’Informàtica, Matemàtica Aplicada i Estadı́stica, Universitat de

Girona, Spain
3 Artificial Intelligence Research Institute (IIIA, CSIC), Spain

We propose to use the SAT and SMT technology to deal with
many-valued logics. Our approach is twofold. Firstly, we focus
on finitely-valued logics, and extend the language of signed CNF
formulas with linear integer arithmetic constraints. This way, we
get a simple modeling language in which a wide range of prac-
tical combinatorial problems admit compact and natural encod-
ings. We then define efficient translations from our language into
the SAT and SMT formalisms, and propose to use SAT and SMT
solvers for finding solutions.

Secondly, we show how we can use the SMT technology to build
efficient automated theorem provers for infinitely-valued logics,
taking Łukasiewicz infinitely-valued logic as a case study.
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1 INTRODUCTION

A many-valued logic (also known as multi-valued or multiple-valued logic) is
a propositional logic where the truth value set has more than two truth values,
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and each connective has a specific semantics. Depending on the cardinal-
ity of the truth value set, we distinguish between finitely-valued logics and
infinitely-valued logics.

In the present paper, with respect to finitely-valued logics, we focus on
the logic of signed CNF formulas [9], which provide a suitable and effective
framework for solving combinatorial problems [3, 11], as well as for effi-
ciently mapping the satisfiability problem of any finitely-valued logic [7].

Devising efficient and effective techniques for solving challenging com-
binatorial problems is a very active research topic in the Constraint Pro-
gramming (CP) and Satisfiability Testing (SAT) research communities. Even
solver competitions are regularly held as co-located events of the major con-
ferences in these fields. Roughly speaking, CP counts with rich modeling
languages, and devoted algorithms for global constraints. SAT counts with a
simple standard modeling language, and fully automatic (no tuning is needed)
solvers that are highly competitive on real-word problems due to the incor-
poration of powerful techniques such as watched literals, clause learning,
non-chronological backtracking and dynamic activity-based variable selec-
tion heuristics.

The first contribution of this work is a new problem solving approach,
based on many-valued logics, that bridges the gap between CP and SAT, and
takes into account the most recently developed SAT technology. Our mod-
eling language extends signed CNF formulas with linear integer arithmetic
(LIA) constraints. Actually, our language may be seen as the many-valued
counterpart of the Pseudo-Boolean formalism in the Boolean setting. This
way, a wide range of combinatorial problems are more naturally and com-
pactly encoded than just using Boolean/many-valued clausal forms, and at the
same time take advantage of the best technology that SAT and Satisfiability
Modulo Theories (SMT) solvers incorporate. A crucial point of our approach
is that our modeling language is very simple, and can be efficiently translated
into the mentioned SAT-based formalisms, as well as to the language used by
the existing many-valued SAT solvers and the solvers of the CP community.
In contrast to more expressive languages, the problem of finding a solution
remains decidable.

A suitable option would be to implement a solver for our language on
top of a highly efficient many-valued SAT solver incorporating the recently
developed SAT technology. This way, the structural information of the do-
main could be exploited in both the branching heuristics and the conflict-
based clause learning module, and stronger forms of consistency could be
enforced. Unfortunately, duplicating all the effort put in contemporary SAT
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solvers would be very costly. Therefore, we believe that a good alternative
to build a solver with relatively low cost is to use efficient and effective en-
codings from our language into the SAT and SMT formalisms, and then use,
depending on the structure of the instance to be solved, either a SAT solver
or an SMT solver for finding solutions. Hence, for our first contribution, we
start by formally defining the new language and then provide efficient trans-
lations from our language into the formalism used by SAT and SMT solvers.
To the best of our knowledge, this is the first time that a link between SMT
and many-valued logics has been established, as well as that LIA constraints
have been incorporated into the many-valued setting.

We would like to mention two recent works of the CP community that,
together with the existing work in our community, have inspired the first
contribution of the present paper. On the one hand, a recent work [17] pro-
poses to use many-valued clausal forms as a language for solving CP prob-
lems. Among other advantages, the authors state that the conflict-based clause
learning of many-valued clausal forms provides a natural way of incorporat-
ing conflict-based clause learning in the CP framework when dealing with
finite domains. On the other hand, one of the best performing solvers in the
CP competitions is Sugar [22]. This solver translates CP problems into SAT
but instead of using translations based on literals of the form x = i, it uses
literals of the form x ≥ i, which have been widely used in many-valued logic
and are known as regular literals [14, 15].

As said above, the significance of signed CNF formulas is not limited to
provide a suitable and effective problem solving framework. Actually, they
originated in the area of automated theorem proving in many-valued logics,
where it was shown that the satisfiability problem of any finitely-valued logic
is polynomially reducible to the satisfiability problem of signed CNF formu-
las [7]. Unfortunately, signed CNF formulas are not well-suited for dealing
with infinitely valued logics too. Therefore, it is not clear how infinitely-
valued logics can take advantage from SAT solvers.

The second contribution of this work is to show how we can use the SMT
technology to build efficient automated theorem provers for infinitely-valued
logics, taking Łukasiewicz infinitely-valued logic as a case study. In partic-
ular, we compare our approach with the implementations of theorem provers
based on symbolic calculi for Łukasiewicz logic presented in [20]. Our ap-
proach is quite natural and easy to extend to other infinitely-valued logics.
Moreover, we have conducted an experimental investigation which confirms
that this approach dramatically outperforms the existing approaches to our
best knowledge.
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The paper is structured as follows. Section 2 extends many-valued clausal
forms with linear integer arithmetic. Sections 3 and 4 define efficient map-
pings from the new formalism into the SAT and SMT formalisms. Section 5
presents and SMT-based automated theorem prover for the infinitely-valued
logic of Łucasiewicz. Section 6 presents the conclusions and future work.

A preliminary short version of the results in this paper was presented at
the 41st IEEE International Symposium on Multiple-Valued Logic [1].

2 EXTENDING MANY-VALUED CLAUSAL FORMS WITH LINEAR
INTEGER ARITHMETIC

We first formally define the syntax and semantics of the many-valued clausal
forms considered in our work, and introduce linear integer arithmetic (LIA)
constraints. Then, we define our modeling language.

Definition 1 A truth value set (or domain)N is a non-empty finite set {i1, i2,
. . . , in}where n ∈ N. The cardinality ofN is denoted by |N |. A total order≤
is associated with N .

For the sake of simplicity, we assume that, unless otherwise stated, all the
propositional variables have the same domain. Extending our results to the
case in which every variable has a different domain is straightforward. We
also assume that domains are of the form {1, 2, . . . , |N |}.

Definition 2 A sign is a subset of the truth value set. A signed literal is an
expression of the form S :x, where S is a sign and x is a propositional vari-
able. The complement of a signed literal S :x, denoted by S :x, is (N \ S):x.
A signed clause is a disjunction of signed literals. A signed CNF formula is a
conjunction of signed clauses.

Definition 3 Given a truth value set N and a value ik ∈ N , a sign S is regu-
lar if it is either of the form {i ∈ N |i ≥ ik} or of the formN\{i ∈ N |i ≥ ik}.
A signed literal is a regular literal if its sign is regular. A sign S is monosigned
if it is either a singleton (i.e. it contains exactly one truth value) or the com-
plement of a singleton. A signed literal is a monosigned literal if its sign is
monosigned. A monosigned literal is positive if it is identical to {ik}:x, and
is negative if it is identical to {ik}:x.

In the sequel, we represent regular literals of the form {i ∈ N |i ≥ ik}:x
by x ≥ ik, regular literals of the form N \ {i ∈ N |i ≥ ik}:x by ¬(x ≥ ik)
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or x ≤ ik − 1, positive monosigned literals of the form {ik}:x by x = ik,
negative monosigned literals of the form {i}:x by ¬(x = ik). Without loss of
generality, all our signed CNF formulas contain only regular and monosigned
literals.

Definition 4 An assignment is a mapping that assigns to every propositional
variable an element of the truth value set. An assignment I satisfies a signed
literal S :x iff I(x) ∈ S, satisfies a signed clause C iff it satisfies at least one
of the signed literals in C, and satisfies a signed CNF formula Γ iff it satisfies
all the clauses in Γ. A signed CNF formula is satisfiable iff it is satisfied by
at least one assignment; otherwise it is unsatisfiable.

Definition 5 A linear integer arithmetic (LIA) expression is an expression of
the form

∑m
i=1 aixi, where ai is a non-zero integer, and xi is a propositional

variable for each i (1 ≤ i ≤ m). Given a LIA expression e, we denote its
lower bound by l(e) and its upper bound by u(e).

Definition 6 Let e be a LIA expression. Then a LIA constraint is an expres-
sion of the form e ⊗ c, where ⊗ ∈ {≤,≥,=} and c is an integer. An assign-
ment satisfies a LIA constraint if the inequality or equality ⊗ holds when the
propositional variables are instantiated by the values of the assignment.

Definition 7 A many-valued formula with LIA constraints (MVL-formula) is
a set of signed clauses and LIA constraints. An assignment satisfies an MVL-
formula if it satisfies both all its signed clauses and all its LIA constraints.

Our new modeling language is the language of MVL-formulas. Notice
that it may be seen as the many-valued counterpart of the Pseudo-Boolean
formalism in the Boolean setting.

Example 1 A magic square of order n is an arrangement of the integers
1, 2, . . . , n2 in an n× n matrix in such a way that the n numbers in all rows,
all columns, and both diagonals sum to the magic constantM = n(n2+1)/2.
If we would like to find a magic square of order 3 in our formalism, we should
find a satisfying assignment for the following MVL-formula over the domain
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N = {1, 2, . . . , 9}:

x11 = 1 ∨ . . . ∨ xij = 1 ∨ . . . ∨ x33 = 1

x11 = 2 ∨ . . . ∨ xij = 2 ∨ . . . ∨ x33 = 2
...

...
...

x11 = 9 ∨ . . . ∨ xij = 9 ∨ . . . ∨ x33 = 9

x11 + x12 + x13 = 15

x21 + x22 + x23 = 15

x31 + x32 + x33 = 15

x11 + x21 + x31 = 15

x12 + x22 + x32 = 15

x13 + x23 + x33 = 15

x11 + x22 + x33 = 15

x13 + x22 + x31 = 15

Variable xij denotes the value of row i and column j, and 1 ≤ i, j ≤ 3.

Proposition 1 The satisfiability problem for MVL-formulas is NP-complete.

This proposition follows from the fact that the SAT problem can be ef-
ficiently reduced to the satisfiability problem for MVL-formulas, and that a
satisfying assignment can be verified in polynomial time.

3 MAPPING MVL-FORMULAS INTO SAT

We first define the translation of a LIA constraint into an equisatisfiable signed
CNF formula, and then the translation of a Signed CNF formula into an eq-
uisatisfiable Boolean CNF formula. This way, solving an MVL-formula with
SAT amounts to replacing their LIA constraints with their Signed SAT en-
coding, translating the derived Signed SAT instance into SAT, and feeding
the resulting SAT instance to a SAT solver.

3.1 LIA Constraints into Signed SAT
We describe a novel Signed SAT encoding of LIA constraints, and propose
to give a geometrical interpretation to encodings in order to produce more
compact models. Observe that a LIA constraint

∑m
i=1 aixi⊗ c over a domain

N , where ⊗ ∈ {≤,≥,=}, is an m-ary constraint. Since m ≥ 2, we will start
by representing this constraint using the signed version of well-know direct
encoding from CSP into SAT [5, 6, 19].
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In the sequel we focus our attention on constraints of the form
∑m
i=1 aixi ≤

c, since
∑m
i=1 aixi ≥ c is equivalent to

∑m
i=1−aixi ≤ −c, and

∑m
i=1 aixi =

c is equivalent to
∑m
i=1 aixi ≤ c and

∑m
i=1 aixi ≥ c.

The idea behind the direct encoding is to represent as clauses the forbidden
assignments (nogoods). In the simplest case, where the arity is 2, if we have
a LIA constraint a1x1 + a2x2 ≤ c, we get the following encoding:∧

a1v1 + a2v2 > c

v1, v2 ∈ N

¬(x1 = v1 ∧ x2 = v2)

For example, the constraint x1+2x2 ≤ 6 over the domainN = {1, 2, 3, 4}
is:

¬(x1 = 1 ∧ x2 = 3) ¬(x1 = 1 ∧ x2 = 4)

¬(x1 = 2 ∧ x2 = 3) ¬(x1 = 2 ∧ x2 = 4)

¬(x1 = 3 ∧ x2 = 2) ¬(x1 = 3 ∧ x2 = 3)

¬(x1 = 3 ∧ x2 = 4) ¬(x1 = 4 ∧ x2 = 2)

¬(x1 = 4 ∧ x2 = 3) ¬(x1 = 4 ∧ x2 = 4)

If we represent the space of all the possible assignments of x1 and x2 in a
matrix, and mark with (vi, vj) the nogoods and with “−” the goods, we get:

x1 = 1 x1 = 2 x1 = 3 x1 = 4

x2 = 4 (1, 4) (2, 4) (3, 4) (4, 4)

x2 = 3 (1,3) (2,3) (3, 3) (4, 3)

x2 = 2 − − (3,2) (4,2)

x2 = 1 − − − −

Thinking geometrically, we have that the possible assignments to x1 and x2

correspond to a square, and the arithmetic constraint corresponds to a straight
line that divides the square into two regions: one containing all the goods
and another containing all the nogoods. Hence, the direct encoding amounts
to explicitly represent all the points of the square that are in the nogood re-
gion. However, we can get more compact representations if a clause encodes
an area of the nogood region containing several nogoods instead of encod-
ing exactly one nogood. This is the idea behind our proposal to defining a
compact encoding of LIA constraints using signed literals. Even when in this
paper we focus on LIA constraints, this geometrical interpretation may lead
to more compact Signed SAT and SAT encodings on a wide range of con-
straints, and provides evidence of the advantages of using signed literals for
modeling combinatorial problems.
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A regular version of the direct encoding for a LIA constraint of the form
a1x1 + a2x2 ≤ c, where a1 > 0 and a2 > 0, was defined in [22] as follows:

∧
b1+b2=c−1

(
x1 ≤

⌊ b1
a1

⌋
∨ x2 ≤

⌊ b2
a2

⌋)
where b1, b2 range over Z, satisfying l(a1x1) − 1 ≤ b1 ≤ u(a1x1) and
l(a2x2)− 1 ≤ b2 ≤ u(a2x2).

The authors of [22] do not describe their encoding as a direct encoding. We
present here a reformulation, based on our geometrical interpretation, which
shows that their encoding is, in fact, a regular direct encoding? :

∧
b1 + b2 = c+ 1⌈
b1
a1

⌉
,
⌈

b2
a2

⌉
∈ N

¬
(
x1 ≥

⌈ b1
a1

⌉
∧ x2 ≥

⌈ b2
a2

⌉)

In general, for a LIA constraint of the form a1x1 + · · · + amxm ≤ c, the
encoding becomes:∧

∑m
i=1 bi = c+m− 1⌈

bi
ai

⌉
∈ N

¬
(
x1 ≥

⌈ b1
a1

⌉
∧ · · · ∧ xm ≥

⌈ bm
am

⌉)

A proof of the correctness of the previous encoding is given below. Before
we give an example. Following our example on the constraint x1 + 2x2 ≤ 6

over the domain N = {1, 2, 3, 4}, the generated clauses would be:

¬(x1 ≥ 1 ∧ x2 ≥ 3) ¬(x1 ≥ 2 ∧ x2 ≥ 3)

¬(x1 ≥ 3 ∧ x2 ≥ 2) ¬(x1 ≥ 4 ∧ x2 ≥ 2)

Thanks to the regular signs, this regular direct encoding produces fewer clauses
than the standard direct encoding with monosigned signs.

Let us see the geometrical interpretation of the clauses of the previous
regular direct encoding: the clause ¬(x1 ≥ 1 ∧ x2 ≥ 3) represents the area
containing the nogoods (1, 4), (2, 4), (3, 4), (4, 4),(1, 3), (2, 3), (3, 3), (4, 3);
the clause ¬(x1 ≥ 2 ∧ x2 ≥ 3) represents the area containing (2, 4), (3, 4),
(4, 4), (2, 3), (3, 3), (4, 3), the clause ¬(x1 ≥ 3∧ x2 ≥ 2) represents the area
containing (3, 4), (3, 3), (3, 2), (4, 4), (4, 3), (4, 2), and the clause ¬(x1 ≥
4 ∧ x2 ≥ 2) represents the area containing (4, 4), (4, 3), (4, 2). Figure 1
graphically illustrates this interpretation.

? If a1 (a2) is negative, then x1 ≥ d b1a1
e (x2 ≥ d b2a2

e) must be replaced with x1 ≤ b b1a1
c

(x2 ≤ b b2a2
c).
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FIGURE 1
Geometrical interpretation for x1 + 2x2 ≤ 6 over the domain N = {1, 2, 3, 4}.

Observe that this regular direct encoding defines areas of the nogood re-
gion whose union covers all the nogoods. However, there is a considerable
overlap among these areas. So, we propose a signed encoding (not neces-
sarily regular) in which the clauses encode areas of the nogood region and
their union covers all the nogoods but there is no overlap. To this end, we
start by deriving the above regular encoding. Then, we remove redundant
clauses. In our example, we remove the clauses ¬(x1 ≥ 2 ∧ x2 ≥ 3) and
¬(x1 ≥ 4 ∧ x2 ≥ 2) because they are proper subsets of one of the remaining
clauses. Nevertheless, after removing redundant clauses, there is yet overlap:
the clauses ¬(x1 ≥ 1 ∧ x2 ≥ 3) and ¬(x1 ≥ 3 ∧ x2 ≥ 2) overlap in the
area formed by (3, 4), (4, 4), (3, 3), (4, 3). To overcome this drawback, we
will use interval signs. Interval signs allow to remove overlapping areas once
redundant clauses have been removed. In our example, the encoding would
be formed by two clauses: ¬([1, 2] : x1∧x2 ≥ 3) and ¬([3, 4] : x1∧x2 ≥ 2).
In order to have a complete encoding in our language we may transform the
interval signed literals into a disjunction of monosigned literals. Otherwise,
we could incorporate interval signed literals in our language. In this case,
we just have to add, for every occurring literal [a, b] : x, the clausal form of
[a, b] : x↔ x ≥ a ∧ ¬(x ≥ b+ 1).

We have so far discussed the new encoding for binary constraints and
its geometrical interpretation, but our approach may also be applied to non-
binary constraints. For instance, for ternary constraints, the space of all possi-
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ble interpretations is represented by a cube, and a LIA constraint of the form
a1x1 + a2x2 + a3x3 ≤ c is a plane that intersects with that cube. To obtain a
compact encoding, we propose to use parallelepipeds represented by clauses
of the form ¬([i1, j1] : x1 ∧ [i2, j2] : x2 ∧x3 ≥ k), which are parallelepipeds
with width j1 − i1, height j2 − i2, and length |N | − k.† All these paral-
lelepipeds may have different volume, and allow to cover the nogood region
without overlap. In the general case, we will have expressions of the form
¬([i1, j1] : x1 ∧ · · · ∧ [im−1, jm−1] : xm−1 ∧ xm ≥ k).

Now we proceed to prove the correctness of the proposed encoding. First
of all, we recall the following Lemma from [22].

Lemma 1 ([22]) For any LIA expressions e, f , and for any integer c ≥ l(e)+

l(f), the following holds:

e+ f ≤ c ⇐⇒
∧

a+b=c−1

(e ≤ a ∨ f ≤ b)

where the parameters a and b range over Z, satisfying l(e) − 1 ≤ a ≤ u(e)

and l(f)− 1 ≤ b ≤ u(f).

It is not difficult to see that the lemma also holds for a narrower range for
a and b, namely l(e) − 1 ≤ a ≤ u(e) − 1 and l(f) − 1 ≤ b ≤ u(f) − 1.
Roughly, if a = u(e) then the clause e ≤ u(e) ∨ f ≤ b is trivially true (and
similarly for b). However, the wider range is preferred by the authors of [22]
to simplify the discussion.

Corollary 1 For any LIA expressions e, f , and for any integer c ≥ l(e) +

l(f), the following holds:

e+ f ≤ c ⇐⇒
∧

a+b=c+1

¬(e ≥ a ∧ f ≥ b)

where the parameters a and b range over Z, satisfying l(e) ≤ a ≤ u(e) and
l(f) ≤ b ≤ u(f).

Proof. First of all, (e ≤ a ∨ f ≤ b) is equivalent to ¬(e > a ∧ f > b), and
to ¬(e ≥ a′ ∧ f ≥ b′) as well, with a′ = a + 1 and b′ = b + 1. Hence,
l(e)− 1 ≤ a ≤ u(e)− 1 and l(f)− 1 ≤ b ≤ u(f)− 1 iff l(e) ≤ a′ ≤ u(e)

and l(f) ≤ b′ ≤ u(f). Finally, a+ b = c− 1 iff a′ + b′ = c+ 1. ut
† Depending on the type of intersection between the plane and the cube, the variables contain-

ing interval (regular) literals may be different.
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The following proposition states the correctness of our encoding.

Proposition 2 For any LIA expression
∑m
i=1 aixi and for any integer c ≥

l(
∑m
i=1 aixi), the following holds:

m∑
i=1

aixi ≤ c ⇐⇒

∧
∑m

i=1 bi=c+m−1

¬
(

(a1x1 ≥ b1)# ∧ · · · ∧ (amxm ≥ bm)#
)

where the parameters bi range over Z satisfying l(aixi) ≤ bi ≤ u(aixi), and
the translation ( )# is defined as follows:

(ax ≥ b)# =


x ≥

⌈ b
a

⌉
if a > 0

x ≤
⌊ b
a

⌋
if a < 0

Proof. The satisfiability of
∑m
i=1 aixi ≤ c is equivalent to the satisfiability

of
∧∑m

i=1 bi=c+m−1 ¬((a1x1 ≥ b1)∧· · ·∧(amxm ≥ bm)) from Corollary 1,
and the satisfiability of each aixi ≥ bi is equivalent to the satisfiability of
(aixi ≥ bi)#. ut

3.2 Signed SAT into SAT
Translating signed CNF formulas into satisfiability equivalent Boolean CNF
formulas has been proposed in [4, 10]. It amounts to interpreting signed lit-
erals as Boolean literals, and adding, for each propositional variable, the fol-
lowing Boolean clauses:‡

x ≥ |N | → x≥|N |−1 x = 1↔ ¬x≥2

x≥|N |−1→ x≥|N |−2 x = 2↔ x≥2 ∧ ¬(x≥3)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
x≥3→ x≥2 x = i↔ x≥i ∧ ¬(x≥i+ 1)

x≥2→ x≥1 · · · · · · · · · · · · · · ·
x = |N |−1↔ x≥|N |−1 ∧ ¬(x≥|N |)

x = |N | ↔ x≥|N |

(1)

The clauses on the left encode the order relation while the clauses on the right
link monosigned and regular literals. It turns out that the derived Boolean
CNF formula and the input signed CNF formula are equisatisfiable.

‡ For the sake of clarity, in this paper we sometimes use a→ b and ¬(a ∧ b) instead of their
clausal form: ¬a ∨ b and ¬a ∨ ¬b, respectively.
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4 MAPPING MVL-FORMULAS INTO SMT

An SMT instance is a generalization of a Boolean formula in which some
propositional variables have been replaced by predicates with predefined in-
terpretations from background theories. For example, a formula can contain
clauses like, e.g., p ∨ q ∨ (x + 2 ≤ y) ∨ (x > y + z), where p and q are
Boolean variables, and x, y and z are integer variables. Predicates over non-
Boolean variables, such as linear integer inequalities, are evaluated according
to the rules of a background theory. Examples of theories include linear real
or integer arithmetic, arrays, bit vectors, etc., or combinations of them.

Formally speaking, a theory is a set of first-order formulas closed under
logical consequence. The SMT problem for a theory T is: given a first-order
formula F , determine whether there is a model of T ∪ {F}.

Although an SMT instance can be solved by encoding it into an equisatis-
fiable SAT instance and feeding it to a SAT solver, currently most successful
SMT solvers are based on the integration of a SAT solver and a T -solver,
that is, a decision procedure for the given theory T . In this so-called lazy
approach, while the SAT solver is in charge of the Boolean component of rea-
soning, the T -solver deals with sets of atomic constraints in T . The main idea
is that the T -solver analyzes the partial model that the SAT solver is build-
ing, and warns it about conflicts with theory T (T -inconsistency). This way,
we are hopefully getting the best of both worlds: in particular, the efficiency
of the SAT solver for the Boolean reasoning and the efficiency of special-
purpose algorithms inside the T -solver for the theory reasoning. See [21] for
a survey on this approach.

Among the theories considered in the SMT library [8] we are interested
in integer numbers and fixed size bit vectors, and more specifically in the
following logics:

• QF LIA: quantifier-free linear integer arithmetic. In essence, closed
quantifier-free formulas with Boolean combinations of inequalities be-
tween linear polynomials over integer variables.

• QF IDL: difference logic over the integers. A fragment of QF LIA
where inequalities are restricted to have the form x− y⊗ b being x and
y integer variables, b an integer constant and ⊗ ∈ {<,≤, >,≥,=, 6=}.

• QF BV: closed quantifier-free formulas over bit vectors, with opera-
tions such as concatenation, extraction and the usual bitwise logical
operations.
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Next we describe how to translate an MVL-formula into SMT instances
using the above logics. For QF LIA the translation is direct, whereas for
QF IDL and QF BV we first need to translate the MVL-formula into a signed
CNF formula (as shown in Section 3).

4.1 Linear Integer Arithmetic
QF LIA is a language more general than our MVL-formulas and therefore it
captures such formulas quite naturally.

Example 2 The SMT encoding of Example 1 in the SMT-LIB language v2.0
under QF LIA is as follows:

(set-logic QF_LIA)

(declare-fun x11 () Int)

...

(declare-fun x33 () Int)

(assert

(and

(and (>= x11 1) (<= x11 9)

...

(>= x33 1) (<= x33 9))

(and (or (= x11 1) ... (= x33 1))

...

(or (= x11 9) ... (= x33 9)))

(and (= 15 (+ x11 x12 x13))

(= 15 (+ x21 x22 x23))

(= 15 (+ x31 x32 x33))

(= 15 (+ x11 x21 x31))

(= 15 (+ x12 x22 x32))

(= 15 (+ x13 x23 x33))

(= 15 (+ x11 x22 x33))

(= 15 (+ x13 x22 x31)))

)

)

(check-sat)

In the above example we can find three sections. The first one determines
the logic to be used. The second one declares the variables occurring in the
formula. The third one contains the formula, which must not be necessarily in
clausal form. Notice that the first part of the formula constraints the domains
of the variables.
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4.2 Integer Difference Logic
Given a signed CNF formula, we translate regular literals of the form x ≥ a

into the difference logic atom (≥ x a), and monosigned literals of the form
x = a into the difference logic atom (= x a). Apart from this translations,
we must define that each variable x has domain N : (and (≥ x 1) (≤ x |N|)).

4.3 Bit Vectors
We now describe how a signed CNF formula can be encoded as an equisat-
isfiable QF BV formula. Given a signed CNF formula F , for each distinct
propositional variable x and each distinct signed literal Si : x with x, we cre-
ate: (i) a Boolean variable xi; (ii) a bit vector variable bxi

whose length is the
cardinality |N | of the domain; and (iii) a bit vector constant cxi of the same
length whose j-th bit is 1 iff j ∈ Si.

Next, we define:

Boolean mapping of F as the formula resulting from replacing each signed
literal of the form Si :x in F with xi.

Bit vector linking of a signed literal Si :x as the formula:

xi → (bxi = cxi) ∧ ¬xi → (bxi = (bvnot cxi))

Non-emptiness of a propositional variable x in F as the formula:

(bvand bx1
. . . bxn

) 6= 0

where S1 :x, . . . , Sn :x are all the signed literals with x in F .

Then, the conjunction of the Boolean mapping of F , the bit vector linking
of every signed literal Si :x in F , and the non-emptiness formula of every
propositional variable x in F , gives us a QF BV formula which is equisatis-
fiable to F .

Notice that our formulation is not only valid for monosigned and regular
literals, but for arbitrary signed literals Si :x because the bit vector constants
cxi

explicitly represent the sign Si.
Recall from Definition 4 that an assignment I maps every propositional

variable x to an element of the domain, and it satisfies a signed literal S :x iff
I(x) ∈ S. Therefore, the QF BV formula obtained from a signed formula F
is equisatisfiable to F since, for each Si :x in F :

• The j-th bit of cxi
is 1 iff j ∈ Si.

14



• The vector linking formulas guarantee that the I(x)-th bit of bxi is set
to 1. Notice that Si :x has been replaced by xi and, when xi is true, bxi

is equal to cxi
(the bit vector representing Si) and, when xi is false, bxi

is equal to its complement.

The non-emptiness constraint, for each variable x, ensures consistency of
I(x) with I ′(xi) for all signed literals Si :x, where I ′ is a Boolean assignment.
Since bvand is a bitwise AND on bitvectors, we are enforcing that, at least
for one k in the domain (including I(x)), the k-th bit of all bxi

is 1 and, hence,
consistency.

Example 3 Let F be a signed CNF formula of the form

{{1, 2}:x ∨D1, {1, 3}:x ∨D2, . . .}

where D1, D2 are disjunctions of signed literals. Assuming that {1, 2}:x
and {1, 3}:x are the only signed literals with x in F , and that the domain is
{1, . . . , 8}, the resulting QF BV formulation is:

(set-logic QF_BV)

(declare-fun x1 () Bool)

(declare-fun x2 () Bool)

...

(declare-fun b_x1 () (_ BitVec 8))

(declare-fun b_x2 () (_ BitVec 8))

...

(assert

(and

(or x1 ...)

(or x2 ...)

...

(=> x1 (= b_x1 #b00000011))

(=> (not x1) (= b_x1 #b11111100))

(=> x2 (= b_x2 #b00000101))

(=> (not x2) (= b_x2 #b11111010))

(not (= (bvand b_x1 b_x2) #b00000000))

)

)

(check-sat)
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5 SMT-BASED AUTOMATED THEOREM PROVING IN INFINITELY-
VALUED LOGICS

The significance of signed CNF formulas is not limited to provide a suit-
able and effective problem solving framework. Actually, they originated in
the area of automated theorem proving in many-valued logics, where it was
shown that the satisfiability problem of any finitely-valued logic is polynomi-
ally reducible to the satisfiability problem of signed CNF formulas. Unfor-
tunately, signed CNF formulas are not well-suited for dealing with infinitely
valued logics too. Therefore, it is not clear how infinitely-valued logics can
take advantage from SAT solvers.

The aim of this section is to show that SMT technology can indeed be
used to build efficient automated theorem provers in infinitely-valued logics,
taking Łukasiewicz infinitely-valued logic as a case study. As we will see,
infinitely-valued logics can be encoded into SMT in a natural and compact
way. In particular, we are interested in the real numbers theory, namely [8]:

• QF LRA logic: quantifier-free linear real arithmetic. In essence, closed
quantifier-free formulas with Boolean combinations of inequalities be-
tween linear polynomials over real variables.

On the other hand, the mature state of SMT technology leads to very ef-
ficient theorem provers, and it would be very costly to duplicate the same
efforts for developing efficient theorem provers based on a tableaux calcu-
lus [18] or a sequent calculus [12].

The section is organized as follows. We first formally define Łukasiewicz
infinitely-valued logic. Then, we define an SMT-based theorem prover for
Łukasiewicz logic. Finally, we report on experimental results that provide
empirical evidence of the good performance profile of the defined SMT-based
theorem prover.

5.1 Łukasiewicz logic
The syntax and semantics of Łukasiewicz infinitely-valued logic is defined as
follows:

Definition 8 A propositional language is a pair L =< Θ, α >, where Θ is a
set of logical connectives and α : Θ→ N defines the arity of each connective.
Connectives with arity 0 are called logical constants. If Θ = {θ1, . . . , θr},
in the following we will denote the propositional language < Θ, α > with
< θ1/α(θ1), . . . , θr/α(θr) >.
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Given a propositional signature Σ, the set LΣ of L-formulas over Σ is
inductively defined as the smallest set with the following properties:

1. Σ ⊆ LΣ.

2. If θ ∈ Θ and α(θ) = 0, then θ ∈ LΣ.

3. If φ1, . . . , φm ∈ LΣ, θ ∈ Θ and α(θ) = m, then θ(φ1, . . . , φm) ∈ LΣ.

Definition 9 The language of Łukasiewicz logic is given by

LŁuk =< ¬/1,→ /2,∧/2,∨/2,�/2,⊕/2 > .

Subsets of the set of connectives such as {→,¬} and {⊕,¬} are func-
tionally complete. Nevertheless, we consider the whole set of connectives to
illustrate how they are encoded into SMT. We refer to ¬ as negation, refer to
→ as implication, refer to ∧ as weak conjunction, refer to ∨ as weak disjunc-
tion, refer to � as strong conjunction, and refer to ⊕ as strong disjunction.

Definition 10 If L =< Θ, α > is a propositional language, N is a truth
value set and A assigns to each θ ∈ Θ a function Aθ : Nα(θ) → N , then we
call a pair A =< N,A > a matrix for L.

A pair L =< L,A > consisting of a propositional language and a matrix
is called a many-valued logic.

Many-valued logics are equipped with a non-empty subset D of N called
the designated truth values which are the truth values that are considered to
affirm satisfiability.

Definition 11 The Łukasiewicz infinitely-valued logic is the many-valued logic
such that N is the real unit interval [0, 1], L = LŁuk, D = {1}, and the ma-
trix is given by:

A¬(x) = 1− x
A→(x, y) = min{1, 1− x+ y}
A∧(x, y) = min{x, y}
A∨(x, y) = max{x, y}
A�(x, y) = max{0, x+ y − 1}
A⊕(x, y) = min{1, x+ y}

Definition 12 Let L be a many-valued logic. An interpretation is a function
I : Σ→ N . I is extended to arbitrary formulas φ in the usual way:

1. If φ is a logical constant, the I(φ) = A(φ).
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2. If φ = θ(φ1, . . . , φr) , then I(θ(φ1, . . . , φr)) = Aθ(I(φ1), . . . , I(φr)).

A formula φ of the Łukasiewicz infinitely-valued logic is satisfiable iff there
is an interpretation such that I(φ) = 1, and it is a tautology iff I(φ) = 1 for
every interpretation.

5.2 The SMT-based Theorem Prover
Our aim is to develop a theorem prover capable of determining whether a for-
mula φ of the Łukasiewicz infinitely-valued logic is a tautology. To this end,
we develop a satisfiability checker for Łukasiewicz logic, and we ask whether
there is an interpretation I such that I(φ) < 1. If such an interpretation does
not exist, then φ is a tautology.

Figure 2 shows the code of the SMT-based theorem prover for the Łukasi-
ewicz logic in the SMT-LIB language v2.0 under QF LRA. We can find three
sections. The first one determines the logic to be used: quantified free lin-
ear real arithmetic (QF LRA). The second one declares the connectives of
Łukasiewicz logic, and the variables occurring in the formula. Notice that
the variable domains are restricted to the real unit interval. After the defini-
tion of the min and max functions, all the connectives except negation use
the ite (if-then-else) SMT function: (ite Bool s s) returns its second
argument or its third depending on whether its first argument is true or not.

The third one contains the following query: Is there an interpretation I of
the formula φ = (x⊕x)∨(y⊕y)→ (x∨y)⊕(x∨y) such that I(φ) < 1. φ is
a tautology because the theorem prover returns unsatisfiable. If we would like
to determine whether another formula is a tautology, we should only replace
the formula and leave the rest of the program unchanged.

5.3 Experimental Results
We performed an empirical comparison between our theorem prover and the
three theorem provers for the Łukasiewicz logic used in [20], which corre-
spond to implementations of the theorem provers of Hähnle [16] based on
mixed integer programming, Olivetti [18], based on tableaux, and Ciabattoni
et al. [12], based on a hypersequent of relations calculus.

We solved the benchmarks used in [20], which are defined as follows:

• Formula 1: An ∨Bn → (A ∨B)n

• Formula 2: (A ∨B)n → An ∨Bn

where A1 = A and An = A�An−1.
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(set-logic QF_LRA)

; min(x,y)

(define-fun min ((x Real) (y Real)) Real

(ite (> x y) y x))

; max(x,y)

(define-fun max ((x Real) (y Real)) Real

(ite (> x y) x y))

; strong disjunction: sdis(x,y) = min{1,x+y}

(define-fun sdis ((x Real) (y Real)) Real

(min 1 (+ x y)))

; strong conjuction: scon(x,y) = max{0,x+y-1}

(define-fun scon ((x Real) (y Real)) Real

(max 0 (- (+ x y) 1)))

; weak disjunction: wdis(x,y) = max{x,y}

(define-fun wdis ((x Real) (y Real)) Real

(max x y))

; weak conjunction: wcon(x,y) = min{x,y}

(define-fun wcon ((x Real) (y Real)) Real

(min y x))

; negation: neg(x) = 1 - x

(define-fun neg ((x Real)) Real

(- 1 x))

; implication: impl(x,y) = min{1,1-x+y}

(define-fun impl ((x Real) (y Real)) Real

(min 1 (- (+ 1 y) x)))

(declare-fun x () Real)

(declare-fun y () Real)

(assert (>= x 0))

(assert (<= x 1))

(assert (>= y 0))

(assert (<= y 1))

(assert (< (impl (wdis (scon x x) (scon y y))

(scon (wdis x y) (wdis x y))) 1))

(check-sat)

FIGURE 2
Code of the SMT-based theorem prover for the Łukasiewicz infinitely-valued logic.
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The experiments range from n = 2 to n = 12. We set a cutoff time
of 1 hour on a machine with 2.5 GHz and 0.5G mem. We ran the theorem
provers used in [20] on SWI-Prolog [24] (version 5.10.5) using the clpqr
(Constraint Logic Programming over Rationals and Reals) library, which is a
port of the CLP(Q,R) system of Sicstus Prolog. The SMT solver we used in
our approach is Z3 [13] (version 3.2) with the QF LRA logic.

The results obtained are shown in Table 1. Run time is in seconds. Failed
tests are indicated with *. As pointed out in [20], this may be due to problems
with the clpq constraint library.

As we can see, our approach with SMT clearly outperforms the rest of the
approaches. This result validates our thesis that SMT technology allows to
build efficient automated theorem provers for infinitely-valued logics, such
as Łukasiewicz logic. In order to check that there is a value of n for which
the formula becomes harder in our approach we have added an extra line with
n = 500.

SMT solvers are designed to efficiently deal with problems that have a
Boolean structure over atoms of some theories such as the real numbers. No-
tice that the ite functions build the Boolean structure on the predicates on
the theory of reals. SMT solvers typically integrate a SAT solver, which ef-
ficiently deals with the Boolean structure of the formula, and (one or more)
theory solvers which efficiently deal with the theory predicates.

6 CONCLUSIONS

Our work proposes the use of SAT and SMT technology to deal with many-
valued logics. We have first focused on finitely-valued logics, and have de-
fined a new many-valued modeling language that extends signed CNF for-
mulas with LIA constraints. The resulting language (MVL-formulas) allows
to model a wide range of practical combinatorial problems in a natural and
compact way.

Then, we have defined efficient mappings from MVL-formulas to both
SAT and SMT. We claim that it is better to model the problems to be solved
in our language and then translate them either to SAT or SMT. Notice that if
we perform a direct translation from SAT to SMT, we have to treat the SMT
variables as Boolean variables since the domain information is lost in the SAT
encoding.

Regarding the question of whether it is better to use either a SAT solver or
an SMT solver, we believe that this depends on the particular structure of the
problem to be solved. Fortunately, our simple modeling language allows the
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Hähnle Olivetti Ciabonetti et al. SMT
n (1) (2) (1) (2) (1) (2) (1) (2)
2 0.49 0.42 0.01 0.02 0.34 0.01 0.02 0.03
3 1.1 1.5 0.06 0.20 0.04 0.03 0.03 0.03
4 3 5 0.17 1.3 0.17 0.10 0.03 0.03
5 8 15 0.45 7 1.2 0.22 0.03 0.03
6 24 52 1.1 31 7 0.61 0.03 0.03
7 81 195 2.7 125 * 1.6 0.03 0.03
8 281 3578 6 462 * 4 0.03 0.03
9 2409 > 1h 15 1628 * 10 0.04 0.04

10 > 1h > 1h 33 > 1h * 26 0.04 0.04
11 > 1h > 1h 77 > 1h * 63 0.04 0.04
12 > 1h > 1h 181 > 1h * 149 0.04 0.04

500 > 1h > 1h > 1h > 1h * > 1h 436 288

TABLE 1
Comparison of theorem provers for Łukasiewicz logic. Run time in seconds.

translation to both SAT and SMT. We plan to provide direct translations into
CP solver languages as well.

It is worth noticing that, for the first time, we have extended signed CNF
formulas with LIA constraints, and defined novel encodings from this new
language into SAT. Furthermore, we have introduced a geometrical interpre-
tation of the direct encoding that allows one to produce more compact and
natural encodings of LIA constraints when signed literals are used. We plan
to apply this approach to other constraints, and empirically evaluate the im-
pact of eliminating redundancies.

Besides, we have established, for the first time, a link between signed CNF
formulas and SMT formalisms, as well as defined efficient encodings from
our language into SMT. On the one hand, we have shown that SMT allows
one to deal with signed CNF formulas and LIA constraints using a high-
level language. On the other hand, we have defined a trickier encoding of
signed CNF formulas based on bit vectors that leads to a new approach to
solving many-valued SAT problems. The next step is to design and conduct
an empirical evaluation of these encodings.

We have also focused on infinitely-valued logics. In particular, we have
shown that it is possible to easily build efficient automated theorem provers
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based on the SMT technology. As a case study we have considered the
Łukasiewicz infinitely-valued logic, but our approach can be extended to
other infinitely-valued logics. Actually, after the acceptance of the present
paper, SMT technology has been used to build automated theorem provers
for other relevant infinitely-valued logics [2, 23]. Moreover, the reported
experimental investigation shows that the proposed SMT approach clearly
outperforms other existing theorem provers for Łukasiewicz infinitely-valued
logic.
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into encodings from MaxCSP into partial MaxSAT. In Proceedings, 40th International
Symposium on Multiple-Valued Logics (ISMVL), Barcelona, Spain, pages 46–52. IEEE CS
Press.

[6] Josep Argelich, Alba Cabiscol, Inês Lynce, and Felip Manyà. (2012). Efficient encodings
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