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Abstract Due to significant advances in SAT technology in the last years, its
use for solving constraint satisfaction problems has been gaining wide acceptance.
Solvers for satisfiability modulo theories (SMT) generalize SAT solving by adding
the ability to handle arithmetic and other theories. Although there are results
pointing out the adequacy of SMT solvers for solving CSPs, there are no available
tools to extensively explore such adequacy. For this reason, in this paper we intro-
duce a tool for translating FLATZINC (MINIZINC intermediate code) instances of
CSPs to the standard SMT-LIB language. We provide extensive performance com-
parisons between state-of-the-art SMT solvers and most of the available FLATZINC
solvers on standard FLATZINC problems. The obtained results suggest that state-
of-the-art SMT solvers can be effectively used to solve CSPs.

1 Introduction

The Boolean satisfiability problem (SAT) is the problem of determining if there
exists an assignment to the variables of a Boolean formula that makes it evaluate
to true. Over the last decade there have been important advances in SAT solving
techniques, to the point that SAT solvers have become a viable engine for solving
constraint satisfaction problems (CSPs) [38,16,36].

On the other hand, SAT techniques have been adapted for more expressive
logics. For instance, in the case of Satisfiability Modulo Theories (SMT), the problem
is to decide the satisfiability of a formula with respect to a background theory (or
combinations of them) in first order logic with equality [28,32]. SMT has its roots
in the field of hardware and software verification and, although most SMT solvers
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are restricted to decidable quantifier free fragments of their logics, this suffices for
many applications. In fact, there are already promising results in the direction
of adapting SMT techniques for solving CSPs, even in the case of combinatorial
optimization [26]. Fundamental challenges for SMT for constraint programming
and optimization are detailed in [27].

The Satisfiability Modulo Theories Library (SMT-LIB) [8] provides a common
standard for the specification of benchmarks and of background theories for SMT.
In the field of Constraint Programming (CP) MINIZINC [25] has been proposed
as a standard CSP modelling language among many others [37,22]. MINIZINC
model and data files are compiled into model instances written in an intermediate
language called FLATZINC. Those instances can then be fed into any existing CSP
solver, provided that a FLATZINC front-end is available for it.

With the aim of bringing a bit more of SMT technology to CP, in this paper
we introduce a tool for solving FLATZINC instances through SMT called fzn2smt.*
Essentially, fzn2smt is based on a translator from the FLATZINC language to the
standard SMT-LIB language v1.2 [30]. A suitable logic for solving each problem
instance is determined automatically by fzn2smt during the translation, and the
generated output can be fed into any SMT solver, which is used as a black box.

Our work is similar to that of FzNTini [23], where FLATZINC instances are
translated into SAT, and also to that of Simply [11], where a compiler from a
declarative language to the standard SMT-LIB language was developed. Roughly
speaking, the translator inside fzn2smt has the same input language as FzNTini,
and the same output language as Simply. Moreover, like FzZNTini, fzn2smt is able to
solve optimization problems by means of successive calls to the decision procedure,
performing either linear, binary or a kind of hybrid search. However, only binary
search is supported by FzNTini.

We provide extensive experimentation with fzn2smt (using different SMT sol-
vers) and other FLATZINC solvers. We also compare distinct encodings and opti-
mization methods for fzn2smt. The good results obtained by fzn2smt suggest that
state-of-the-art SMT solvers can effectively be used to solve CSPs. We remark
that scheduling problems are the ones on which we obtained the best results. In-
terestingly, these problems have a significant amount of disjunctions (non-unary
clauses) and Boolean variables, which we believe allow the SMT solvers to profit
from specialized built-in techniques such as unit propagation, learning and back-
jumping.

The rest of the paper is organized as follows. In Section 2 we briefly introduce
MiNiZINC and SMT. In Section 3 we describe fzn2smt and point out the main
aspects of the translation from FLATZINC to the standard SMT-LIB language v1.2.
Section 4 is devoted to performance comparisons between several SMT solvers
within fzn2smt and, on the other hand, between several FLATZINC back-ends and
fzn2smt. We provide some statistical tests on performance. Finally, in Section 5
we conclude and point out some possible future work.

1 fzn2smt can be downloaded from http://ima.udg.edu/Recerca/ESLIP.html.
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2 Preliminaries
2.1 CSPs, MINIZINC and FLATZINC

A Constraint Satisfaction Problem (CSP) consists of a set of variables with associ-
ated domains plus a set of constraints (relations) on the variables. More formally, a
CSP is a tuple (X, D, C) where X = {z1,...,zn} is a set of variables with domains
D = {Dy,...,Dn} and C is a set of constraints. A constraint ¢ € C is a relation
¢ C Dy X --+- X Dy. A solution is any assignment of values to the variables within
their domains such that satisfies all the constraints, i.e., given a CSP (X, D, C),
a tuple d € D is one of its solutions if and only if d € ¢ for all ¢ € C. When
the problem is an optimization one, the solution must also optimize a given cost
function.

Typically, CSPs are divided into two parts: the model (where a parametrized
specification of the problem is given) and the data (where particular values are
given). The model plus the data give us an instance.

MINIZINC [25] aims to be a standard language for specifying CSPs (with or
without optimization) over Booleans, integers and real numbers. It is a mostly
declarative constraint modelling language, although it provides some facilities such
as annotations for specifying, e.g., search strategies, that can be taken into account
by the underlying solver. One of the most appealing features of MINIZINC is that
it can be easily mapped onto different existing solvers, by previously compiling its
model and data files into FLATZINC instances. FLATZINC is a low-level solver input
language, for which there exist front-ends for several solvers, such as Gecode [31],
ECL'PS® [6], SICStus Prolog [4], JaCoP [1] and SCIP [3], apart from a number of
solvers developed by the G12 research team.

Exzample 1 This is a MINIZINC toy instance of the well-known Job-shop problem.
We use this example later on to illustrate the translation process of our tool.

size = 2; d = [l 2,56 | 3,4 |1;

int: size; % size of problem

array [1..size,1..size] of int: d; J task durations

int: total = sum(i,j in 1..size) (d[i,j]); % total duration
array [1..size,l..size] of var 0..total: s; J start times
var 0..total: end; % total end time

predicate no_overlap(var int:sl, int:dl, var int:s2, int:d2) =
sl + dl <= 82 \/ 82 + d2 <= si;

constraint
forall(i in 1..size) (
forall(j in 1..size-1) (s[i,j] + d[i,j] <= sl[i,j+11) /\
s[i,size] + d[i,size] <= end /\
forall(j,k in 1..size where j < k) (
no_overlap(s[j,il, d[j,il, slk,i], d[k,i])
)
);

solve minimize end;
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FLATZINC instances are simply a list of variable declarations and flat con-
straints, plus (possibly) a variable to optimize. The MINIZINC to FLATZINGC trans-
lation has two parts (see [25] for details):

— Flattening, where several reductions (built-ins evaluation, comprehension lists
unrolling, fixed array accesses replacement, etc.) are applied until a fix-point
is reached.

— Post-flattening, where some normalisation is done. For example, for Boolean ex-
pressions that are not top-level conjunctions, each sub-expression is replaced by
a new Boolean variable, and constraints equating these new variables with the
sub-expressions they replaced are added (and similarly for non-linear numeric
expressions).

Ezxzample 2 This is the FLATZINC instance resulting from translating the MINIZINC
instance of Example 1.

3

var bool: BOOL

var bool: BOOL

3

1
2
var bool: BOOL 3 = true;
4
5

var bool: BOOL

)

var bool: BOOL____5;

var bool: BOOL____6 = true;

array [1..4] of int: d = [2, 5, 3, 4];
var 5..14: end;

array [1..4] of var 0..14: s;

constraint array_bool_or ([BOOL 1, BOOL____2], BOOL____3);
constraint array_bool_or([BOOL____4, BOOL 5], BOOL 6);
constraint int_lin_le([-1, 1], [end, s[2]]1, -5);

constraint int_lin_le([-1, 1], [end, s[4]], -4);

constraint int_lin_le([1, -11, [s[1], s[211, -2);

constraint int_lin_le([1, -1], [s[31, s[41], -3);

constraint int_lin_le_reif([1, -1], [s[1], s[3]1], -2, BOOL____1);
constraint int_lin_le_reif([-1, 1], [s[1], s[3]1]1, -3, BOOL____2);
constraint int_lin_le_reif([1, -1], [s[2], s[4]], -5, BOOL____4);
constraint int_lin_le_reif([-1, 1], [s[2], s[4]], -4, BOOL____5);

solve minimize end;

Note that the arithmetic expressions have been encoded as linear constraints with
the int_lin le constraint.

The G12 MINIZINC distribution [2] is accompanied by a comprehensive set of
benchmarks. Moreover, in the MINIZINC challenge [35], which is run every year
since 2008 with the aim of comparing different solving technologies on common
benchmarks, all entrants are encouraged to submit two models each with a suite
of instances to be considered for inclusion in the challenge.

2.2 Satisfiability Modulo Theories (SMT)

An SMT instance is a generalization of a Boolean formula in which some proposi-
tional variables have been replaced by predicates with predefined interpretations
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from background theories. For example, a formula can contain clauses like, e.g.,
pVqV(z+2<y)V(zx >y+z), where p and ¢ are Boolean variables and z,y
and z are integer variables. Predicates over non-Boolean variables, such as linear
integer inequalities, are evaluated according to the rules of a background theory.
Examples of theories include linear real or integer arithmetic, arrays, bit vectors,
uninterpreted functions, etc., or combinations of them.

Formally speaking, a theory is a set of first-order formulas closed under logical
consequence. A theory T is said to be decidable if there is an effective method for
determining whether arbitrary formulas are included in T

The SMT problem for a theory T is: given a first-order formula F', determine
whether there is a model of TU{F'}. Usually, T is restricted to be decidable and F’
is restricted to be quantifier-free so that, while providing a much richer modelling
language than is possible with Boolean formulas, the problem is still decidable.

2.2.1 The lazy SMT approach

Although an SMT instance can be solved by encoding it into an equisatisfiable SAT
instance and feeding it to a satisfiability checker for propositional logic (a.k.a. SAT
solver), currently most successful SMT solvers are based on the integration of a
SAT solver and a T-solver, that is, a decision procedure for the given theory T.
In this so-called lazy approach, while the SAT solver is in charge of the Boolean
component of reasoning, the T-solver deals with sets of atomic constraints in 7.
The main idea is that the T-solver analyzes the partial model that the SAT solver
is building, and warns it about conflicts with the theory T (T-inconsistency). This
way, we are hopefully getting the best of both worlds: in particular, the efficiency
of the SAT solver for the Boolean reasoning and the efficiency of special-purpose
algorithms inside the T-solver for the theory reasoning.

Algorithm 1 shows a simplified version of an enumeration-based T-satisfiability
procedure, borrowed from [14], where T-consistency is only checked for total
Boolean assignments. We refer the reader to [32] for a survey on the lazy SMT
approach.

Algorithm 1 Bool+T

Input: ¢ : SMT formula
Output: the satisfiability of ¢
AP := T2B(Atoms(p));
P = T2B(¢);
while Bool-satisfiable(p?) do
uP := pick_total_assignment(AP,pP);
(p, m) := T-satisfiable(B2T (uP));
if p = sat then
return sat;
else
P = P A 2T2B(7);
end if;
end while
return unsat;

The algorithm enumerates the Boolean models of the propositional abstraction
of the SMT formula ¢ and checks for their satisfiability in the theory T.
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— The function Atoms(y) takes a quantifier-free SMT formula ¢ and returns the
set of atoms which occur in ¢.

— The function T2B maps propositional variables to themselves, and ground
atoms into fresh propositional variables; ¢ is initialized to be the propositional
abstraction of ¢ using T2B.

— The function B2T is the inverse of T2B.

— uP denotes a propositional assignment as a set (conjunction) of propositional
literals.

— The function pick_total_assignment returns a total assignment to the proposi-
tional variables in ¢P. In particular, it assigns a truth value to all variables in
AP,

— The function T-satisfiable(u) checks if the set of conjuncts u is T-satisfiable,
i.e., if there is a model for T' U p, returning (sat,) in the positive case and
(unsat,m) otherwise, being m C p a T-unsatisfiable set (the theory conflict set).
Note that the negation of the propositional abstraction of 7 is added to ©” in
case of unsat (learning).

We illustrate Algorithm 1 with Example 3.

Ezample 3 Consider the following SMT formula, expressed as a set of clauses,
where T is assumed to be the theory of linear integer arithmetic:

p="-(x>0)VaVb

—a V —b
—(z+1<0)Va
—bV -y =1)

Then {z > 0,a,b,z + 1 < 0,y = 1} is its set of atoms and

AP = {p(z>0)7 a, bzp(m+1<0)7p(y:1)}

is the Booleanization of this set, where p(;0y, P(z+1<0) and p(,—1) are three fresh
propositional variables corresponding to the arithmetic atoms z > 0,z +1 < 0
and y = 1, respectively. The propositional abstraction of ¢ is then the following
Boolean formula:
W' = P>o) VaVvb

—a V b

“P(z+1<0) V @

bV _‘(p(yzl))

It is not hard to see that ©P is Bool-satisfiable. Suppose that the function pick_to-
tal_assignment(AP,pP) returns us the following Boolean model of ¢”:

1 = {P(z>0: @ 0, D(z41<0): " (P(y=1))}

Now we need to check T-satisfiability of B2T(u?). Since we are interested in check-
ing the consistency of the current Boolean assignment with theory 7', here we only
need to take into account the literals corresponding to the theory, i.e., we have
to check the T-satisfiability of {z > 0,z +1 < 0,—-(y = 1)}. Obviously this is
not T-satisfiable, so we get a subset of T-inconsistent literals from the T-solver,
eg,m™={z >0,z + 1 < 0}, and we extend ¢P with the learned clause, namely
“P(e>0) ¥ "P(z+1<0)- Lhen the search starts again.
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In practice, the enumeration of Boolean models is carried out by means of
efficient implementations of the DPLL algorithm [39], where the u? are partial
assignments built incrementally. These systems inherit the spectacular progress
in performance from SAT solvers in the last decade, achieved thanks to better
implementation techniques and conceptual enhancements. Adaptations of SAT
techniques to the SMT framework have been described in [33]. Unit propagation
is used extensively to perform all the assignments which derive deterministically
from the current pP. This allows the system to prune the search space and to
backtrack as high as possible (backjumping). Another important improvement
consists on checking the T-satisfiability of intermediate assignments, in order to
anticipate possible prunings (early pruning). Theory deduction can be used to reduce
the search space by explicitly returning truth values for unassigned literals, as
well as constructing and learning implications. The deduction capability is a very
important aspect of theory solvers, since getting short explanations (conflict sets)
from the theory solver is essential in order to keep the learned lemmas as short
as possible. Apart from saving memory space, shorter lemmas will allow for more
pruning in general. Finally, in order to avoid getting stuck into hard portions of
the search space, most systems restart from scratch in a controlled manner with
the hope of exploring easier successful branches.

Although we use SMT solvers as black boxes, we conjecture that it is pre-
cisely this strong cooperation between the Boolean reasoning and the arithmetic
reasoning what provides us with a robust performance in problems having a signif-
icant Boolean component. In Section 4 we provide some insights supporting this
conjecture.

2.2.2 The Theories

The Satisfiability Modulo Theories Library (SMT-LIB) [8] has the goal to establish
a library of benchmarks for SMT, as well as to establish a common standard for the
specification of benchmarks and of background theories. The Satisfiability Modulo
Theories Competition (SMT-COMP) is an associated yearly competition for SMT
solvers. Among the theories considered in [8] we are interested in Ints (integer
numbers) and Reals (real numbers). We consider the following logics:

— QF_LIA: quantifier-free linear integer arithmetic. Closed quantifier-free formulas
with Boolean combinations of inequations between linear polynomials over
integer variables, e.g. (3z + 4y > 7) — (2 = 3) where z,y and z are integer
variables.

— QF_IDL: quantifier-free difference logic over the integers. It is a fragment of the
QF_LIA logic where arithmetic atoms are restricted to have the form =z —y < k,
where x and y are integer variables and k is an integer constant.

— QF_LRA: quantifier-free linear real arithmetic. Closed quantifier-free formulas
with Boolean combinations of inequations between linear polynomials over real
variables (similar to QF_LIA but with real variables).

— QF_NTA: quantifier-free integer arithmetic with no linearity restrictions, e.g.
(3zy > 2+ 2%) V (3zy = 9) where z,y and z are integer variables.

The expressivity of each of these logics has its corresponding computational
price. Checking consistency of a set of IDL constraints has polynomial time com-
plexity whereas checking consistency of a set of LIA constraints is NP-complete.
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The non-linear case is in general (with no bounds on the domain of variables)
undecidable.

In addition, we have also considered the previous logics combined with unin-
terpreted functions (e.g., QF_UFLIA). The theory of uninterpreted function sym-
bols (a.k.a. the empty theory) is just the theory of equality with no additional
equational axioms. As we show in Subsection 3.2.1, the possibility of using un-
interpreted function symbols allows us to trivially codify array accesses, since
x =y — f(z) = f(y) is an axiom of the theory of equality.

3 The Tool

This section is devoted to the description of our tool, fzn2smt. First of all we show
the architecture of the tool, and afterwards describe its translation and optimiza-
tion processes.

3.1 Architecture of the Tool

Our tool is diagrammatically represented in Fig. 1, through the process of com-
piling and solving FLATZINC instances. Shaded boxes (connected by dashed lines)
denote inputs and outputs, rounded corner boxes denote actions and diamond
boxes denote conditions.

The input of the compiler is a FLATZINC instance which we assume to come
from the translation of a MINIZINC one. Hence we are dealing with “safe” FLATZINC
instances, e.g., we don’t care about out of bounds array accesses. We are also
assuming that all global constraints have been reformulated into FLATZINC con-
straints with the default encoding provided by the MINIZINC distribution.

The input FLATZINC instance is translated into an SMT one (in the standard
SMT-LIB format v1.2) and fed into an SMT solver. As a by-product, fzn2smt
generates the corresponding SMT instance as an output file. Due to the large
number of existing SMT solvers, each one supporting different combinations of
theories, the user can choose which solver to use (default currently being Yices 2
Prototype).2

The FLATZINC language has three solving options: solve satisfy, solve mini-
mize obj and solve maximize obj, where obj is either the name of a variable v or
a subscripted array variable v[i], where i is an integer literal. Since optimization
is supported neither in the SMT-LIB language nor by most SMT solvers, we have
naively implemented it by means of iterative calls successively restricting the do-
main of the variable to be optimized (as explained in detail in Subsection 3.2.3).
Notice from the diagram of Fig. 1 that when, after restricting the domain, the SMT
solver finds that the problem is not satisfiable anymore, the last previously saved
(and hence optimal) solution is recovered. Moreover, since there is no standard
output format currently supported by SMT solvers,® we need a specialized recov-
ery module for each solver in order to translate its output to the FLATZINC output

2 http://yices.csl.sri.com/download-yices2.shtml

3 There are even solvers that only return sat, unsat or unknown. A proposal of a standard
format for solutions has been recently proposed in the SMT-LIB Standard v2.0 [9].
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format. Currently, fzn2smt can recover the output from Yices [20], Barcelogic [10],
Z3 [19] and MathSat [15] SMT solvers.

restrict
domain

SMT

- m yes save
; at? ;
compile solve sat? solution

7y

! |
! |
! |

FLATZINC SMT —
instance no output
FLATZINC|
(= = = = recover
output no

Fig. 1 The compiling and solving process of fzn2smt.

=
@
=+
o
=1
Q
@

3.2 The Translation

Since we are translating FLATZINC instances into SMT, we have to keep in mind

two important considerations: on the one hand we have a much richer language

than plain SAT, thanks to the theories, and this will allow for more direct trans-

lations. On the other hand, in order to take advantage of the SMT solving mecha-

nisms, the more logical structure the SMT formula has, the better. In particular,

it is better to introduce clauses instead of expressing disjunctions arithmetically.
A FrATZINC file consists of

1. a list of constant and (finite domain) variable declarations,
2. a list of flat constraints, and
3. a solve goal.

Here we describe the translation of these three basic ingredients.

3.2.1 Constant and Variable Declarations

FLATZINC has two categories of data: constants (also called parameters) and vari-
ables (typically with an associated finite domain). Data can be of any of three
scalar types: Booleans, integers and floats, or of any of two compound types:
sets of integers and one-dimensional (1..n)-indexed arrays (multi-dimensional ar-
rays are flattened to arrays of one dimension in the translation from MINIZINC to
FLATZINC). Scalar type domains are usually specified by a range or a list of possible
values. Our translation of FLATZINC constants and variables goes as follows:

— Scalar type constant names are always replaced by their corresponding value.
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— Scalar type variable declarations are translated into their equivalent variable

declaration in SMT, plus some constraints on the possible values of the SMT
variable in order to fix the domain. For example, var 0..14: x is translated
into the SMT declaration of the integer variable x plus the constraints = > 0,
z < 14, whereas var {1,3,7}: x is translated into the SMT declaration of the
integer variable x plus the constraint x =1Vvz=3va=7.
Although SMT solvers are able to deal with arbitrarily large integers (as
well as with arbitrary precision real numbers), for unrestricted domain in-
teger variables we assume the G12 FLATZINC interpreter default domain range
of -10000000..10000000, i.e., we add the constraints x > —10000000, =z <
10000000 for every unrestricted integer variable z. This way, the results ob-
tained by our system are consistent with the ones obtained by other tools.

— The domain of a FLATZINC set of integers is specified either by a range or by

a list of integers. For this reason, we simply use an occurrence representation
by introducing a Boolean variable for every possible element, which indicates
whether the element belongs to the set or not. This allows for a simple trans-
lation into SMT of most of the constraints involving sets (see Subsection 3.2.2
below).
However, in order to be able to translate the set cardinality constraint, which
implies counting the number of elements in a set, a 0/1 partner variable is
needed for each introduced Boolean variable. For example, given the declara-
tion var set of {2,5,6}:s, we introduce three Boolean variables s2, s5 and s,
three corresponding integer variables s;,, s;. and s;,, the constraints restricting
the domain of the integer variables

0< 84,8, <1
0<s4,,s8, <1
0 <844, 85 < 1

and the constraints linking the Boolean variables with their integer counterpart

s2 = 85, =1, 759 = 55, =0
55— S, =1, 785 = 55, =0
=0.

sg — 85, = 1, 786 — 55

Hence, the number of SMT variables increases linearly with the size of the
domain of the set. Note also that all introduced clauses are either unary or
binary, and hence facilitate Boolean unit propagation.
For the case of constant sets no variables are introduced at all. Instead, the
element values of the constant set are directly used in the operations involving
it, in order to obtain a simpler encoding.

— For the translation of arrays, we provide two options (which can be chosen by
a command line option):*

— Using uninterpreted functions: each array is translated into an uninter-

preted function of the same name. For example array[1..3] of var 1..5:a
is translated into a : int — int. The domain of the elements of the array

4 Due to our encoding of the operations on sets, arrays of sets are always decomposed into
a number of sets.
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is constrained as in the scalar case, that is, 1 < a(1), a(1) < 5, 1 < a(2),
a(2) <5,1<a(3),a(3) <5.

— Decomposing the array into as many base type variables as array elements.
For example, the previous array a would be decomposed into three integer
variables a1, a2 and agz, with the domain constrained analogously to before.

In the case of constant arrays, equality is used (instead of two inequalities
restricting the domain) to state the value of each element. If, moreover, an
access to a constant array uses a constant index, we can simply replace that
access with its corresponding value. And, if this is the case for all the accesses
to an array, then there is no need for introducing an uninterpreted function or
a set of base type variables to represent the array.

Regarding the two possible encodings, the use of uninterpreted functions seems
to be more natural, and allows for more compact encodings of array constraints.
For example, to express that some element of the previous array a is equal to
1, we simply write

1<4,i<3
a(i) =1

where 7 is an integer variable, whereas in the decomposition approach the same
statement should be expressed as

1<i,i<3
i=1—a1 =1
i:2—>a2:1

i=3—>a3=1.

On the other hand, we have ruled out using the SMT theory of arrays. This
theory involves read and write operations and, hence, is intended to be used
for modelling state change of imperative programs with arrays. But, since it
makes no sense thinking of write operations on arrays in the setting of CP, it
suffices to translate every expression of the form read(a,:) into a(i), where a
is an uninterpreted function. Moreover, deciding satisfiability of sets of atomic
constraints involving uninterpreted functions is far cheaper than using the ar-
rays theory.

However, the uninterpreted functions approach still has the drawback of using
more than one theory, namely, uninterpreted functions (UF) and linear integer
arithmetic (LIA), and suffers from a non-negligible computational overhead
due to theory combination. In Section 4 a performance comparison of the two
possible encodings for arrays is given.

3.2.2 Constraints

The second and main block of a FLATZINC file is the set of constraints that a
solution must satisfy. The arguments of these flat constraints can be literal values,
constant or variable names, or subscripted array constants or variables v[i] where i
in an integer literal. A literal value can be either a value of scalar type, an explicit
set (e.g., {2,3,5}) or an explicit array [yi,...,yr], where each array element y;
is either a non-array literal, the name of a non-array constant or variable, or
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a subscripted array constant or variable v[i], where 7 in an integer literal (e.g.,
[x,al[1],3]).

We perform the following translation of constraint arguments prior to trans-
lating the constraints. Constant names are replaced by their value. Scalar type
variables are replaced by their SMT counterpart. Finally, array accesses are trans-
lated depending on the chosen array treatment (see the previous subsection): when
using uninterpreted functions, an array access v[i] is translated into v(z), where
v is an uninterpreted function; when decomposing the array into base type vari-
ables, v[i] is translated into v; (the corresponding variable for that position of the
array). We remark that, in all array accesses v[i], ¢ can be assumed to be an integer
literal, i.e., ¢ cannot be a variable, since all variable subscripted array expressions
are replaced by array_element constraints during the translation from MINIZINC
to FLATZINC. Moreover, we don’t need to perform array bounds checks, because
this is already done by the MINTZINC to FLATZINC compiler.

In the following we describe the translation of the constraints, that we have
categorized into Boolean constraints, Integer constraints, Float constraints, Array con-
straints and Set constraints.

— Boolean constraints are built with the common binary Boolean operators (and,
or, implies, ...) and the relational operators (<, <, =, ...) over Booleans. All
of them have their counterpart in the SMT-LIB language, and hence have a
direct translation.

There is also the bool2int (a,n) constraint, which maps a Boolean variable into
a 0/1 integer. We translate it into (a - n =1) A (ma — n =0).

— Integer constraints are built with the common relational constraints over inte-
ger expressions (hence they are straightforwardly translated into SMT). They
also include some named constraints. Here we give the translation of some
representative ones.

The constraint
int,lin,eq([ch ey cn], [vl, .. ,vn]7 r)

where ci,...,cn are integer constants and vi,...,vn are integer variables or
constants, means, and is translated as

E CiV; = T.

i€l.n

The minimum constraint int min(a,b,c), meaning min(a,b) = ¢, is translated
as

(a>b—=c=bA(a<b—c=a).
The absolute value constraint int_abs(a,b), meaning |a| = b, is translated as

(a=bV—-a=bAb>0.

The constraint int_times(a,b,c), that states a-b = ¢, can be translated into a
set of linear arithmetic constraints under certain circumstances: if either a or
b are (uninstantiated) finite domain variables, we linearize this constraint by
conditionally instantiating the variable with the smallest domain, e.g.,

/\ (i=a—i-b=c).

i€Dom(a)
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In fact, we do it better (i.e., we do not necessarily expand the expression for
all the values of Dom(a)) by considering the domain bounds of b and ¢, and
narrowing accordingly the domain of a.

Since it is better to use the simplest logic at hand, we use linear integer arith-
metic for the translation if possible, and non-linear integer arithmetic other-
wise. Hence, only in the case that ¢ and b are unrestricted domain variables
we translate the previous constraint as a-b = ¢ and label the SMT instance to
require QF _NTA (non-linear integer arithmetic logic).

— Float constraints are essentially the same as the integer ones, but involving float
data. Hence, the translation goes in the same way as for the integers, except
that the inferred logic is QF_LRA (linear real arithmetic).

— Array constraints. The main constraint dealing with arrays is element, which
restricts an element of the array to be equal to some variable. As an example,
array_var_int_element(i, a, e) states i € 1..n A afi] = e, where n is the size
of a. The translation varies depending on the representation chosen for arrays
(see the previous subsection):

— In the uninterpreted functions approach, the translation is
1<iAni<nAa(i)=ce,

where a is the uninterpreted function symbol representing the array a.
— In the decomposition approach, the translation is

1<iAi<nA /\ i=j—aj=e
jEl..n

Constraints such as array_bool_and, array-bool_or or bool_clause, dealing with
arrays of Booleans, are straightforwardly translated into SMT.

— Set constraints. These are the usual constraints over sets. We give the translation
of some of them.
The constraint set_card(s,k), stating |s| = k, is translated by using the 0/1
variables introduced for each element (see the previous subsection) as

Z Sij =k.

j€Dom(s)

The constraint set_in(e,s), stating e € s, is translated depending on whether
e is instantiated or not. If e is instantiated then set_in(e,s) is translated as
se if e is in the domain of s (recall that we are introducing a Boolean variable
se for each element e in the domain of s), and as false otherwise. If e is not
instantiated, then we translate the constraint as

(e=74)Nsj.
j€Dom(s)

For constraints involving more than one set, one of the difficulties in their
translation is that the involved sets can have distinct domains. For example,
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the constraint set_eq(a,b), stating a = b, is translated as

CLj = bj
j€Dom(a)NDom(b)
A /\ —aj | A /\ —|bj
j€Dom(a)\Dom(b) j€Dom(b)\Dom(a)

And the constraint set_diff(a,b,c), which states a \ b = ¢, is translated as

A aj = ¢

j€(Dom(a)\Dom(b))NDom(c)

N /\ —aj | A /\ -C;

Jj€(Dom(a)\Dom(b))\Dom(c) j€Dom(c)\Dom(a)

A /\ cy
j€Dom(a)NDom(b)NDom(c)

A /\ a; — bj
j€(Dom(a)NDom(b))\Dom(c)

Although the translation of the set constraints seem to be convoluted, note
that we are mainly introducing unit and binary clauses. We remark that when
the sets are already instantiated at compilation time, some simplifications are
actually made. Note also that the size of the SMT formula increases linearly
in the size of the domains of the sets.

Finally, let us mention that almost all FLATZINC constraints have a reified
counterpart. For example, in addition to the constraint int_le(a,b), stating a < b,
there is a constraint int_le reif(a,b,r), stating a < b +> r, where a and b are
integer variables and r is a Boolean variable. In all these cases, given the translation
of a constraint, the translation of its reified version into SMT is direct.

3.2.8 Solve Goal

A FrATZINC file must end with a solve goal, which can be of one of the following
forms: solve satisfy, for checking satisfiability and providing a solution if possi-
ble, or solve minimize obj or solve maximize obj, for looking for a solution that
minimizes or maximizes, respectively, the value of obj, where obj is either a vari-
able v or a subscripted array variable v[i], where i is an integer literal. Although
search annotations can be used in the solve goal, they are currently ignored in our
tool.

When the satisfy option is used, we just need to feed the selected SMT solver
with the SMT file resulting from the translation explained in the previous subsec-
tions (see Example 4 to see a complete SMT-LIB instance generated by fzn2smt).
Thereafter the recovery module will translate the output of the SMT solver to the
FraTZINC format (as explained in Subsection 3.1).
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Since most SMT solvers do not provide optimization facilities,® we have im-
plemented an ad hoc search procedure in order to deal with the minimize and
maximize options. This procedure successively calls the SMT solver with different
problem instances, by restricting the domain of the variable to be optimized with
the addition of constraints. We have implemented three possible bounding strate-
gies: linear, dichotomic and hybrid. The linear bounding strategy approaches the
optimum from the satisfiable side,® while the dichotomic strategy simply consists
of binary search optimization. Finally, the hybrid strategy makes a preliminary
approach to the optimum by means of binary search and, when a (user definable)
threshold on the possible domain of the variable is reached, it turns into the lin-
ear approach, again from the satisfiable side. Both the bounding strategy and the
threshold for the hybrid case can be specified by the user from the command line.

When possible, it would be interesting to keep the learnt clauses from one
iteration of the SMT solver to the next (for example in the linear strategy, where
we are approaching to the optimum from the satisfiable side). This is not possible
with the basic version of fzn2smt, which is designed to communicate with an SMT
solver using external files, as shown in Figure 1. However, we have tested the
approach of keeping the learnt clauses by using the Yices API without obtaining
significantly better results.

Ezample 4 Continuing Example 2, here follows the SMT-LIB instance produced
by fzn2smt.

(benchmark jobshopp.fzn.smt
:source { Generated by fzn2smt }
:logic QF_IDL
:extrapreds ((BOOL____4) (BOOL 2) (BOOL 1) (BOOL____5))
:extrafuns ((s_1_ Int) (s_2_ Int) (s_3_ Int) (s_4_ Int) (end Int))
:formula (and

(>= end 5)

(<= end 14)
(>=s_1_0)
(<= s_1_ 14)
(>=s_2_0)
(k= s_2_ 14)
(>=s_3_ 0)
(<= s_3_ 14)
(>=s_4_0)
(<= s_4_ 14)

(= (or BOOL 1 BOOL 2) true)

(= (or BOOL____4 BOOL____5) true)
(<= (+ (" end) s_2_) (7 5))
(<= (+ (" end) s_4_) (" 4))

(<= (+ s_1_ (7 s_22)) (7 2))

5 There are however some solvers, such as Yices and Z3, that already provide Max-SMT
facilities. On the other hand, the problem of optimization modulo theories has been recently
addressed in [17], by introducing a theory of costs.

6 This allows us to eventually jump several values when we find a new solution. On the
contrary, approaching from the unsatisfiable side is only possible by modifying the value of the
variable to optimize in one unit at each step.
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(<= (+ s_.3_ (" s_4.)) (7 3))

= (<= (+ s_1_ (~ s_3_)) (T 2)) BOOL____1)
= (<= (+ (" s_1_) s_3_) (7 3)) BOOL____2)
= (<= (+ s_2_ (" s_4.)) (7 5)) BOOL____4)
= (k= (+ (7" s_2_) s_4_) (T 4)) BOOL____5)

4 Benchmarking

In this section we compare the performance of £zn2smt and that of several existing
FLATZINC solvers on FLATZINC instances, and provide some possible explanations
about the fzn2smt behaviour. We first compare several SMT solvers within fzn2smt
and, then, use the one with the best results to compare against other existing
FLATZINC solvers.

We perform the comparisons on the benchmarks of the three MINIZINC chal-
lenge competitions (2008, 2009 and 2010), consisting of a total of 294 instances
from 32 problems. These benchmarks consist of a mixture of puzzles, planning,
scheduling and graph problems. Half of the problems are optimization problems,
whilst the other half are satisfiability ones.

We present several tables that, for each solver and problem, report the accu-
mulated time for the solved instances and the number of solved instances (within
parenthesis). The times are the sum of the translation time, when needed (e.g.,
fzn2smt translates from FLATZINC to the SMT-LIB format), plus the solving time.
We indicate in boldface the cases with more solved instances, breaking ties by total
time. The experiments have been executed on an Intel Core i5 CPU at 2.66 GHz,
with 6GB of RAM, running 64-bit openSUSE 11.2 (kernel 2.6.31), with a time
limit of 15 minutes per instance (the same as in the competition).

4.1 £fzn2smt with State-of-the-Art SMT Solvers

Here we compare the performance of several SMT solvers which are SMT-LIB 1.2
compliant, working in cooperation with fzn2smt v2.0.1, on the MINIZINC challenge
benchmarks. We have selected the solvers that historically have had good perfor-
mance in the QF _LIA division of the annual SMT competition. These are Barce-
logic 1.3 [10], MathSAT 5 (successor of MathSAT 4 [15]; still work in progress),
Yices 1.0.28 [20], Yices 2 Prototype (still work in progress), and Z3.2 [19]. Linux
binaries of most of these solvers can be downloaded from http://www.smtcomp.org.

In the executions of this subsection we have used the default options for
fzn2smt: array expansion (see Subsection 3.2.1) and binary search for optimization
(see Subsection 3.2.3).

In Table 1 we can observe that Yices 1.0.28 and Yices 2 are able to solve, re-
spectively, 213 and 212 (out of 294) instances. We consider performance of Yices 2
the best of those considered because it had the best performance on 19 of the
problems, far more than any of the other solvers.
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Table 1 Performance of state-of-the-art SMT solvers in cooperation with fzn2smt on the
MINIZINC challenge benchmarks. Type ’s’ stands for satisfaction and ’o’ for optimization.
# stands for the number of instances.

[ Problem [ Type | # [Barcelogic 1.3] MathSAT 5] Yices 1.0.28 | Yices 2 proto | 73.2 |
debruijn-binary s | 11 0.60 (1) 056 (1) 0.47 (1) 050 (1) 057 (1)
nmseq s | 10| 000 (0)] 56835 (2)| 778.07 (5)| 1is.74 (2)] 173.84 (5)
pentominoes s 7 0.00 (0)] 291.60 (1) 50.47 (2) 168.47 (2) | 31448 (1)
quasigroup? s 10 3416  (2)| 191.83 (5) 54.94 (5) 20.03 (5) | 691.32 (4)
radiation o 9| 342.34 (1) 220202 (9)| 373.24 (9) | 1047.03 (9)] 2473.27 (9)
rCpsp o | 10| 0.00 (0)| 31546 (2)| 920.08 (8)| 993.74 (9) | 1791.79 (3)
search-stress s 3 084 (2) 1.05 (2) 086 (2) 0.74 (2) 0.84 (2)
shortest-path o | 10]109.35 (9) | 48473 (3)| ©658.58 (9)| 1419.67 (7)| 790.54 (3)
slow-convergence || s | 10| 405.25 (7)| 42679 (7)| 260.66 (7)| 247.06 (7)| 291.99 (7)
trucking o | 10| 25411 (5)] 3170 (4)| 9.50 (5)| 4777 (5)] 108497 (4)
black-hole s | 10| 51113 (1)| 2924 (1)|3857.51 (9)| 89246 (8)| 765.00 (1)
fillomino s | 10| 93.87 (10)| 3028 (10)| 20.48 (10)| 19.99 (10)| 21.13 (10)
Tonogram s | 10| 000 (0)] 000 (0)]1656.54 (10) | 154656 (7)| 0.00 (0)
open-stacks o | 10177230 (5)| 0.00 (0)| 702.00 (6)| 707.25 (7)| 776.61 (6)
pif o | 10| 87554 (3)| 86.90 (9)| 167.84 (9)| 126.01 (9)| 184.22 (9)
prop-stress s | 10| 31580 (7)] 33031 (7)| 266.11 (7)| 27407 (7)] 289.23 (7)
rect-packing s | 10| 559.50 (5)| 679.62 (10)| 104.82 (10) | 106.66 (10)| 122.28 (10)
Toster-model o | 10| 9841 (10)| 5103 (10)| 53.89 (10)| 50.38 (10) | 56.04 (10)
search-stress2 s | 10| 23.19 (10)| 14.63 (10) 9.43 (10 7.90 (10) | 1055 (10)
still-Tife o 4| 3064 (3)| 13251 (4| 12871 (4)| 62.18 (4)] 17382 (4)
Vip o [ 10| 000 (0)] 0.00 (0) 0.00 (0) 0.00 (0)] 0.0 (0)
costas-array s 5 0.00 (0) 0.00 (0) 675.23 (1) | 664.13 (2)| 628.83 (1)
depot-placement o 15| 2480.74 (5) | 2496.69 (10) 613.53 (15) | 295.78 (15) | 2073.93 (15)
filter o | 10| 24.02 (6)] 3801 (6)| 2428 (6)| 17.88 (6)| 2242 (o)
ghoulomb o | 10| 000 (0)] 000 (0)] 7587 (1)]2545.02 (6)| 50819 (2)
gridColoring o 5 4.82 (2)| 202.18 (3) 857.74  (3) 38.15 (3) 51.94 (3)
repsp-max o 10 85.04 (1) ] 23834 (2) 533.87 (4) 47514 (4) | 383.73 (4)
solbat s | 15| 000 (0)]1721.73 (15)| 34104 (15)| 141.48 (15)] 1339.75 (15)
sugiyama2 o 51 7938 (5)| 2131 (5) 1026 (5) 8.64 (5)| 956 (5)
wwtp-random s 5 61.08 (5) 29.72 (5) 17.71  (5) 15.21 (5) 16.56 (5)
wwtp-real 5 51 10757 (5)| 39.77 (5) 1707 (5)| 14.47 (8)| 17.09 (5)
bacp o | 15| 1753.26 (14) | 232.22 (15)| 75.16 (15)| 64.17 (15)| 9751 (15)
Total 204 | 10023(120) | 10880(168) | 13325(213) | 12137(212) | 15162(192)

4.1.1 Array encodings

In Table 2 we compare the performance of using array decomposition versus unin-
terpreted functions as array encodings. We only give the results for Yices 2 proto,
which is the solver with the best performance in the executions of Table 1 (where
array decomposition was used as default option).

As shown in Table 2, the decomposition approach clearly outperforms the
uninterpreted functions approach on FLATZINC instances from the MINIZINC dis-
tribution. We have also tested other SMT solvers than Yices, obtaining similar
results. This apparently strange behaviour is better understood when looking at
how SMT solvers deal with uninterpreted functions and, in particular, how this
behaves on the instances generated by our tool. Hence, first of all, let us see some
possible treatments to uninterpreted functions in the context of SMT. The reader
can refer to [14] for a deeper discussion on this issue.

When dealing with two or more theories, a standard approach is to handle
the integration of the different theories by performing some sort of search on the
equalities between their shared (or interface) variables. First of all, formulas are
purified by replacing terms with fresh variables, so that each literal only contains
symbols belonging to one theory. For example,

a(ly=x+2
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Table 2 Performance with Yices 2 using array decomposition vs uninterpreted functions (UF).

[ Problem [[ Type [ # [ Decomposition | UF |
debruijn-binary s 11 0.50 (1) 0.74 (1)
nmseq B 10 118.74 (2) 83.51 (2)
pentominoes B 7 168.47 (2) 197.22 (1)
quasigroup7 B 10 20.03 (5) 336.59 (5)
radiation o 9 | 1047.03 (9) | 2360.85 (9)
rcpsp o 10 993.74 9) 695.84 (8)
search-stress B 3 0.74 (2) 0.84 (2)
shortest-path o 10 | 1419.67 (7) | 1068.03 (4)
slow-convergence s 10 247.06 (7) 522.42 (3)
trucking o 10 47.77 (5) 39.67 (5)
black-hole s 10 892.46 (8) 0.00 (0)
fillomino s 10 1099  (10) | 19.21  (10)
nonogram s 10 | 1546.56 () 0.00 (0)
open-stacks o 10 707.25 (7) | 1729.37 (5)
pif o 10 | 126.01 9) 25.49 ®)
prop-stress s 10 274.07 (7) | 262.95 (7)
rect-packing S 10 106.66 (10) 112.10 (10)
roster-model o 10 50.38 (10) 51.01 (10)
search-stress2 s 10 7.90 (10) 9.74 (10)
still-Tifo ° 1| 62.18 @) | 9739 (@)
vIp o 10 0.00 (0) 0.00 (0)
costasArray B 5 664.13 (2) 151.60 (1)
depot-placement o 15 295.78 (15) | 2651.71 (10)
filter ° 10 17.88 (6) 23.12 @)
ghoulomb o 10 | 2545.02 (6) 707.74 (2)
gridColoring o 5 38.15 (3) 335.10 (3)
rcpsp-max o 10 475.14 (4) 498.89 (4)
solbat B 15 141.48 (15) 567.69 (15)
sugiyama?2 o 5 8.64 (5) 9.04 (5)
wwtp-random s 5 15.21 (5) 34.67 (5)
wwtp-real s 5 14.47 (5) 28.82 (5)
bacp ° 15 64.17  (15) | 7785  (15)
Total 294 | 12137 (212) | 12609 (175)

is translated into
a(v1) = v2
vy =1
vy =x+2

where the first literal belongs to UF, and the rest belong to LIA. The variables vy,
vy are then called interface variables, as they appear in literals belonging to different
theories. An interface equality is an equality between two interface variables. All
theory combination schemata, e.g., Nelson-Oppen [24], Shostak [34], or Delayed
Theory Combination (DTC) [13], rely to some point on checking equality between
interface variables, in order to ensure mutual consistency between theories. This
may imply to assign a truth value to up to all the interface equalities. Since the
number of interface equalities is given by |V|- (|]V| —1)/2, where [V] is the number
of interface variables, the search space may be enlarged in a quadratic factor in
the number of interface variables.
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In the case of combining UF with another theory T, an alternative approach
is to eliminate the uninterpreted function symbols by means of Ackermann’s re-
duction [5], and then solve the resulting SMT problem with only theory 7. In
Ackermann’s reduction, each application f(a) is replaced by a variable fq, and for
each pair of applications f(a), f(b) the formula a =b — f, = f} is added, i.e., the
single theory axiom z =y — f(z) = f(y) of the UF theory becomes instantiated as
necessary. This is the approach taken by most state-of-the-art SMT solvers. How-
ever, this has the same disadvantage as theory combination in that the number
of additional literals is quadratic in the size of the input and, in fact, as shown
n [14], there is no clear winner between DTC and Ackermannization.

It is worth noting that current SMT solvers have been designed mainly to deal
with verification problems, where there are few parameters and almost all variable
values are undefined. In such problems, uninterpreted functions are typically used
to abstract pieces of code and, hence, their arguments are variables (or expressions
using variables). Moreover, the number of such abstractions is limited. This makes
Ackermannization feasible in practice. On the contrary, in the instances we are
considering, we have the opposite situation: a lot of parameters and a few decision
variables. In particular, most arrays are parameters containing data. For example,
in a scheduling problem, a FLATZINC array containing durations of tasks, such as

array[1..100] of int: d = [2,5,...,4];

could be expressed using an SMT uninterpreted function as follows:

(1) =2
a(2)=5
d(100) .:“4.

Similarly, for an undefined array containing, e.g., starting times, such as
array[1..100] of var 0..3600: s;

we could use an uninterpreted function, and state its domain as follows:

0 < s(1), s(1) < 3600
0 < s(2), s(2) < 3600

0 < 5(100), s(100) < 3600.

In any case, lots of distinct uninterpreted function applications appear, and Ack-
ermannization results in a quadratic number of formulas like 1 = 2 — f1 = fo,
which are trivially true since the antecedent is false. Although difficult to deter-
mine because we are using each SMT solver as a black box, we conjecture that this
is not checked in the Ackermannization process since, as said before, uninterpreted
functions are expected to have variables in the arguments.

Finally, although the decomposition approach exhibits better performance than
the uninterpreted functions approach, we have decided to maintain both options in
our system. The main reason is that the uninterpreted functions approach allows
for more compact and natural representations and, hopefully, can lead to better
results in the future if Ackermannization is adapted accordingly.
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4.1.2 Bounding Strategy

Here we test the performance of Yices 2 with the different bounding strategies
described in Subsection 3.2.3 for optimization problems. For the hybrid strategy
we have used the default threshold of 10 units for switching from the binary to
the linear approximation strategy. Experiments with a larger threshold have not
yielded better results.

Table 3 Performance with Yices 2 using different optimization search strategies.

[ Problem [ #] Binary [ Hybrid [ Linear |
radiation 9 | 1047.03 (@) | 130459 _ (9) | 200877 __ (9)
rCpsp 10 | 993.74 (9) | 71077 (8) | 118011 (5)
shortest-path 10 1419.67 (7) | 1381.92 (7) | 1034.22 (8)
trucking 10 1777 () | 4186  (5) 34.66 (5
open-stacks 10 707.25 (7) | 650.27 (7) 691.46 (7)
pIf 10 | 126.01 9) | 125.44  (9) | 183.14  (9)
roster-model 10 50.38 (10) 50.29 (10) 50.16 (10)
still-life 1 62.18 (@) | 11854 (4 11939 (4)
vIp 10 0.00 (0) 000 (0 000 (0)
depot-placement 15 295.78 (15) | 248.19 (15) 263.61 (15)
filter 10 17.88 © | 17.37 (6 1834 ©)
ghoulomb 10 | 2545.02 (6) | 2825.16 _ (6) | 1255.42 _ (3)
gridColoring 5 38.15 (3) 17.43 (3) 17.81 (3)
rcpsp-max 10 475.14 (4) | 460.08 (4) 1035.02 (4)
sugiyama?2 5 8.64 (5) 8.37 (5) 9.25 (5)
bacp 15 6417 (15) | 58.03  (15) 6498  (15)
Total 153 7898  (113) 8018 (113) 7971 (108)

Table 3 shows that the binary and hybrid strategies perform better than the
linear one in general. Both the binary and hybrid strategies are able to solve the
same number of instances, but the first one spends less time globally. Neverthe-
less, the hybrid strategy is faster than the binary in most of the problems. And,
curiously, the linear strategy is better in three problems.

We want to remark that the linear strategy approaches the optimum from the
satisfiable side. We also tried the linear strategy approaching from the unsatisfiable
side but the results where a bit worse globally. This is probably due to the fact
that this last strategy can only make approximation steps of size one whilst the
former can make bigger steps when a solution is found. Moreover, the formula
resulting from the translation of many MINIZINC benchmarks has very simple
Boolean structure (the formula is often trivially satisfiable at the Boolean level),
and hence it is likely that the SMT solver cannot substantially profit from conflict-
driven lemma learning on unsatisfiable instances. In fact, there exist unsatisfiable
instances that result in a few or no conflicts at all, and most of the work is hence
done by the theory solver.

4.2 FLATZINC Solvers

In this section we compare the performance of fzn2smt (using Yices 2) and the
following available FLATZINC solvers: Gecode (winner of all MINIZINC challenges),
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Table 4 Performance comparison between fzn2smt and some available FLATZINC solvers.

‘ n ‘ Problem H Typc‘ # ‘ Gecode ‘ FZNTini ‘ G12 ‘ G12 lazy_fd ‘ fzn2smt ‘
1 [ debruijn-binary s 11 4.46 (6) 0.06 (1)] 31.30 (6) 0.00 (0) 050 (1)

2 [ nmseq s 10 [ 535.62 (8) 264 ()] 92742 (7) 000 (0)] 11874 (2)

3 | pentominoes s 71601.82 (7)| 89.68 (1) 848.17 (4)| 46657 (5)] 16847 (2)

1| quasigroup? s | 10|278.73 (6)| 7328 (&)| 172 (5 285 (5)] 2030 (5

5 | radiation ° 9 [1112.14 (9)|4260.37 (7)|1302.79 (9)|  3.60 (9)|1047.03 (9)

6| tcpsp o | 10| 1207 (5)| 000 (0)] 97.27 (5)] 82.60 (8)]993.74 (9)

7 | search-stress S 3 11.30 (2)] 391.71 (3) 14.66 (2) 0.40 (3) 0.74  (2)

8 | shortest-path o | 10| 44249 (10)| 000 (0)] 427 (4)] 127.77 (10)]1419.67 (7)

9 | slow-convergence s 10 8.41 (10) 62.62 (4) 95.42 (10) 154.83 (10) | 247.06  (7)

10 | trucking o | 10| 1.01 (5)] 59323 (4)| 412 (5)| 159.84 (5)] 4777 (5)
11 | black-hole s | 10| 6068 (7)| 0.00 (0)|2423.48 (6)| 97.69 (7)]892.46 (8)
12 | fillomino s | 10| 11862 (10)| 4.36 (10)| 332.56 (10)|  2.59 (10)| 19.99 (10)
13 | nonogram s | 10]1353.63 (8)| 48.13 (7)| 336.93 (2)]1533.07 (9)|1546.56 (7)
14 | open-stacks o | 10]169.74 (8)|1325.98 (4)] 209.55 (3 0.00 (0)] 707.25 (7)
15 | pif o | 10| 257 (8)] 31565 (9)] 240 (3) 0.00 (0)] 126.01 (9)
16 | prop-stress s | 10| 600.80 (4)| 22352 (2)| 883.08 (3)| 221.95 (9)| 27407 (7)
17 | rect-packing s | 10| 13436 (6)| 56057 (3)| 339.80 (6)| 16558 (6)] 106.66 (10)
18 | roster-model o | 10| 1.04 (10)] 000 (0)] 446 (10)] 18.80 (7)] 50.38 (10)
19 | search-stress2 s 10 | 296.16 (9) 9.10 (10)| 381.82 (8) 0.08 (10) 7.90 (10)
20 | still-life o 1 101 (3)] 3550 (3)| 256 (3)| 1855 (3)] 62.18 (4)
21 [vp o [ 10| 000 (0)] 000 (0)] 0.00 (0) 0.00 (0)] 0.00 (0)
22 | costas-array S 51943.75 (4)| 405.28 (2)] 423.09 (3) 14554 (2)| 664.13 (2)
23 | depot-placement o 15 [1205.75 (12)]1820.57 (8)| 522.81 (8)] 613.51 (12)]295.78 (15)
24 | filter o | 10| 3005 ()] 6216 (7)] 27872 ()] 2.65 (7)| 1788 (6)
25 | ghoulomb o | 10| 000 (0)] 0.00 (0)] 246.67 (1)]|2512.92 (8)|2545.02 (6)
26 | gridColoring o 51 048 ()] 15271 (3)| 051 (1) 0.0 (1)| 38.15 (3)
27 | rcpsp-max o | 10| 4211 (2)| 000 (0)] 3000 (1)] 59641 (4)]475.14 (4)
28 | solbat s | 15| 746.31 (10)|1300.54 (14)|1540.71 (10)| B311.92 (11)| 141.48 (15)
29 | sugiyama2 o 51 30831 (5)] 37.00 (5)] 51072 (5)| 520.88 (5)| 8.64 (5)
30 | wwip-random s 57 003 (1)] 32221 (3)] 279 (2) 0.00 (0)] 15.21 (5)
31 | wwip-real s 5] 008 (3)]1230.45 (4)] 031 (3)| 7L83 (4)| 14.47 (5)
32 | bacp o | 15| 847.78 (10)|1170.15 (5)] 976.35 (10)| 28.54 (15)| 64.17 (15
Total 204 | 9881 (190)| 15215 (124)| 12366 (166) 7850 (185) | 12137 (212)

G12 and G12 lazy_fd (the solvers distributed with MINIZINC) and FzNTini (a SAT
based solver).

Let us remark that fzn2smt with Yices 2 obtained (ez aequo with Gecode)
the golden medal in the par division and the silver medal in the free division of
the MiN1ZINC challenge 2010, and the silver medal in the same divisions of the
MINIZINC challenge 2011. It is also fair to notice that the solver with the best
performance in the MINIZINC challenges 2010 and 2011 (in all categories) was
Chuffed, implemented by the MINIZINC team and not eligible for prizes.”

Table 4 shows the results of this comparison without using solver specific global
constraints, which means that global constraints are decomposed into conjunctions
of simpler constraints. However, search strategy annotations are enabled in all
experiments and, while fzn2smt ignores them, the other systems can profit from
these annotations.

We can observe that fzn2smt is the solver which is able to solve the largest
number of instances, closely followed by G12 lazy_fd and Gecode. Looking at the
problems separately, fzn2smt offers better performance in 12 cases, followed by
G12 lazy_fd in 10 cases and Gecode in 9 cases.

We remark that G12 lazy_fd does not support instances with unbounded integer
variables: the ones of debruijn-binary, nmseq, open-stacks, plf, wwtp-random. We
have tried to solve these instances by bounding those variables with the MIN1ZINC

7 See http://www.gl2.csse.unimelb.edu.au/minizinc/challenge2011/results2011.html
for details.
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standard default limits, i.e., by setting var -10000000..10000000 : x; for every
unrestricted integer variable z (similarly as we have done for £zn2smt), but G12
lazy_fd runs out of memory. This is probably due to its use of Boolean encodings
for the domains of the integer variables, as these encodings imply introducing a
new Boolean variable for each element of the domain (see [29]).

The plot of Figure 2 shows the elapsed times, in logarithmic scale, for the
solved instances of Table 4. The instances have been ordered by its execution time
in each system. The overall best system (in terms of number of solved instances) is
fzn2smt. However fzn2smt is the worst system (in terms of execution time) within
the first 50 solved instances and, moreover, Gecode is better along the 160 first
instances, closely followed by G12 lazy_fd. It must be taken into account that the
fzn2smt compiler is written in Java, and it generates an SMT file for each decision
problem that is fed into the chosen SMT solver. Hence this can cause an overhead
in the runtime that can be more sensible for the easier instances. Finally, note also
that fzn2smt scales very well from the 50 to the 150 first solved instances. This
exhibits the SMT solvers robustness.

100000

--- GI2

10000

- == Gecode
.......... G12 lazy_fd

1000

Fzntini

Fzn2smt

100

CPU time (s)

0.01

50 100 150 200

Number of solved instances

Fig. 2 Number of solved instances and elapsed times (referred to Table 4).

4.3 FLATZINC Solvers with Global Constraints

Some FLATZINC solvers provide specific algorithms for certain global constraints
(such as alldifferent, cumulative, etc.). Thus, the user can choose not to decom-
pose some global constraints during the translation from MINIZINC to FLATZING,
in order to profit from specific algorithms provided by the solvers.

Table 5 shows the performance of two FLATZINC solvers with support for global
constraints compared to the performance of themselves, and that of fzn2smt, with-



Solving Constraint Satisfaction Problems with SMT 23

Table 5 Performance comparison of £zn2smt vs available FLATZINC solvers with global con-
straints. 4+gc stands for using global constraints, and —gc stands for not using global con-
straints.

‘ I [ [ Gecode [ G12 [ fzn2smt |
‘Problem H Type ‘ #‘ +gc ‘ —gc ‘ +gc ‘ —gc ‘ ‘
debruijn-binary s | 11 114 (1) 146 (6) | 3503 (7) | 31.30 (6) 050 (1)
pentominoes s 7] 65.82 (7) | 601.82 (7) | 8471l (4) | 848.17 (4) | 16847 (2)
quasigroup? s | 10| 250.49 (6) | 27873 (6) 155 (5) 172 (5) | 2003  (5)
rCpsp o | 10 1056 (5) 1207 (5) 051 (4) | 97.27 (5) | 993.74 (9)
black-hole s | 10 2088 (7) | 60.68 (7) | 2405.38 (6) | 242343 (6) | 892.46 (8)
nonogram s | 10| 493.61 (8) | 1353.63 (8) | 351.35 (2) | 336.93 (2) | 154656 (7)
open-stacks o | 10| 168.56 (8) | 169.74 (8) | 283.52 (8) | 299.55 (3) | 707.25 (7)
pif o | 10| 730.60 (10) 257 (3) 187 (3) 204 (8) | 12601 (9)
rect-packing s | 10| 13244 (6) | 13436 (6) 771 (5) | 339.80 (6) | 106.66 (10)
roster-model o 10 0.88 (10) 1.04 (10) 4. 49 (10) 4.46 (10) 50.38 (10)
costasArray s 5] 615.51 (4) 943.75  (4) 411.82 (3) 423.09 (3) 664.13  (2)
depot-placement o 15| 1035.72 (12) | 1205.75 (12) 519.64 (8) 522.81 (8) | 295.78 (15)
filter o | 10 3115 (1) | 3095 (1) | 28057 (1) | 278.72 (1) | 17.88 (6)
ghoulomb o 10| 1044.25 (10) 0.00 (0) 598.54 (3) 246.67 (1) | 2545.02 (6)
rCpsp-max o | 10 504 (2) 211 (2) | 11640 (2) | 380.00 (1) | 475.14 (4)
sugiyama2 o 5] 31004 (5) | 308.31 (5) | 510.84 (5) | 510.72 (5) 8.64 (5)
bacp o | 15| 848.88 (10) | 847.78 (10) | 979.85(10) | 976.35(10) | 64.17 (15)
Total 168 5760 (118) 6006 (105) 7357 (91) 7373 (30) | 8682 (121)

out using that support, on problems where global constraints do occur. Note that
fzn2smt does not provide any specific support for global constraints. We have not
included the results for G12 lazy_fd with global constraints, since it exhibited very
similar performance.

Again we can see that fzn2smt overall offers a bit better performance than
Gecode and G12, even when they are using global constraints. This is even more
significant if we take into account that most of these problems are optimization
ones, and we have naively implemented a search procedure to supply the lack of
support for optimization of SMT solvers (see Subsection 3.2.3). However, Gecode
is best in 9 problems, whereas fzn2smt is best only in 8. We believe that unit prop-
agation and conflict-driven lemma learning at Boolean level, partially compensate
for the lack of specialized algorithms for global constraints in SMT solvers.

4.4 Tmpact of the Boolean component of the instances in the performance of
fzn2smt

In this section we statistically compare the performance of fzn2smt with the best
of the other available FLATZINC solvers, that is Gecode. We compare the number
of solved instances by Gecode and fzn2smt, taking into account their Boolean
component. In particular, we consider the number of Boolean variables and the
number of non-unary clauses of the SMT instances resulting from the translation of
each FLATZINC instance. We first look at this relation graphically (figures 3 and 4)
and propose the following hypothesis: the more Boolean components the problem
has, the better the performance of fzn2smt is with respect to that of Gecode. This
hypothesis seems quite reasonable, because having a greater Boolean component,
the SMT solver can better profit from built-in techniques such as unit propagation,
learning and backjumping. We provide statistical tests to support this hypothesis.

First of all, we define the normalized difference of solved instances of each problem

dif #fzn2smt solved instances — #Gecode solved instances
if = .

F#instances
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This difference ranges from —1 to 1, where —1 means that Gecode has solved all
the instances and fzn2smt none, and 1 means the inverse.

We define the Boolean variables ratio T, of each problem as the average of the
number of Boolean variables divided by the number of variables of each SMT
instance.

Similarly, we define the disjunctions ratio r4 of each problem as the average
of the number of non-unary clauses divided by the number of constraints of each
SMT instance.

In figure 3 we plot the differences with respect to the Boolean variables ratio,
and in figure 4 with respect to the disjunctions ratio. These figures show that, the
more Boolean variables and disjunctions the problem has, the better performance
fzn2smt has, compared to Gecode. In particular, when the Boolean variables ratio
ry is above 0.2, fzn2smt is able to solve more instances than Gecode (i.e., the
difference is positive). Only in two of those problems Gecode is able to solve
more instances than fzn2smt, namely in nmseq (problem #2) and open-stacks
(problem #14). In these problems, Boolean variables are mainly used in bool2int ()
constraints, hence these variables provide little Boolean structure and the SMT
solver cannot profit from their contribution. When considering the disjunctions
ratio, £zn2smt outperforms Gecode only when r4 is above 0.4. An exception to this
fact is again on nmseq, where most disjunctions come from bool2int ().

Note that fzn2smt is able to solve more instances than Gecode in propagation
stress (problem #16), which has neither Boolean variables nor disjunctions. This is
probably due to the fact that the linear constraints of the problem can be solved
by the Integer Difference Logic (IDL), a subset of LIA which is very efficiently
implemented by Yices [21].

We use a paired ¢-test in order to show that our method (fzn2smt with Yices)
solves significantly more instances than Gecode. For each problem i € 1..n, being
n the number of considered problems, we take X; as the normalized number of
instances solved by fzn2smt and Y; as the normalized number of instances solved
by Gecode, and define D; = X; — Y; with null hypothesis

Ho:pp =pe—py=0
i.e., Ho : pz = py. Then we calculate the t-value as

t = ﬂ

Sp/vi
where Dy, is the sample mean of the D; and S}, is the sample standard deviation
of the D;. This statistic follows a Student’s-¢ distribution with n — 1 degrees of
freedom.

Table 6 shows that in the general case with all 32 problems there is no sig-
nificant difference between the means of the two solvers (the probability of the
null hypothesis is p = 0.2354). Therefore we cannot say that fzn2smt is statisti-
cally better than Gecode. But, already for problems with Boolean variables ratio
ry > 0.1 we observe a significant difference (i.e., with p < 0.05 in all tests) in favor
of fzn2smt. This confirms our hypothesis: the higher the Boolean variables ratio
is, the better the performance of fzn2smt is with respect to that of Gecode. We
also note that if we use the disjunctions ratio r4 for comparing the means, the
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Fig. 3 Normalized difference of solved instances between fzn2smt and Gecode with respect
to the ratio of Boolean variables. The numbers next to the points denote instance numbers

(see Table 4).

results are similar: with r; >= 0.4 the difference of means is significant in favor of

fzn2smt.

Table 7 shows that the difference of means of fzn2smt and G12 lazy_fd is less
significant. We have not taken into account the problems not supported by G12
lazy_fd due to unbounded integer variables. These results suggest that the two
approaches work similarly well for the same kind of problems.

Table 6 Paired t-test, with probability p of the null hypothesis, for the difference in mean of
the number of solved instances by fzn2smt and Gecode, for problems with different ratios r,

and 74.
T #problems p T4 #problems p
> 0.0 32 0.2354 >0.0 32 0.2354
>0.1 21 0.0150 >0.1 24 0.0472
>0.2 19 0.0043 >0.2 24 0.0472
>0.3 19 0.0043 > 0.3 23 0.0540
>04 17 0.0057 >04 17 0.0060
> 0.5 14 0.0001 > 0.5 16 0.0056
> 0.6 13 0.0003 > 0.6 11 0.0006
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Fig. 4 Normalized difference of solved instances between fzn2smt and Gecode with respect
to the ratio of disjunctions. The numbers next to the points denote instance numbers (see
Table 4).

Table 7 Paired t-test, with probability p of the null hypothesis, for the difference in mean of
the number of solved instances by fzn2smt and G12 lazy_fd, for problems with different ratios
ry and 4.

Ty F##problems D rq F#problems D
> 0.0 27 0.8929 > 0.0 27 0.8929
>0.1 16 0.0157 >0.1 20 0.1853
>0.2 15 0.0152 >0.2 20 0.1853
>0.3 15 0.0152 >0.3 19 0.1856
> 04 14 0.0147 > 04 15 0.0279
> 0.5 13 0.0140 > 0.5 14 0.0274
> 0.6 12 0.0028 > 0.6 10 0.0633

5 Conclusion

In this paper we have presented fzn2smt, a tool for translating FLATZINC instances
to the standard SMT-LIB v1.2 language, and solving them through a pluggable
SMT solver used as a black box. Our tool is able to solve not only decision prob-
lems, but optimization ones. In spite of the lack of support for optimization of most
SMT solvers, surprisingly good results have been obtained on many optimization
problems by means of successive calls to the decision procedure, performing ei-
ther linear, binary or hybrid (binary and linear) search. The £zn2smt system with
Yices 2 has obtained remarkably good results in the MINIZINC challenges 2010 and
2011.
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We have performed exhaustive experimentation on nearly 300 MINIZINC in-
stances using four distinct FLATZINC solvers, and using fzn2smt with five distinct
SMT solvers (using various translation options), lasting more than 12 days of CPU.
The good results obtained by fzn2smt on the MINIZINC benchmarks suggest that
the SMT technology can be effectively used for solving CSPs in a broad sense.
We think that fzn2smt can help getting a picture of the suitability of SMT solvers
for solving CSPs, as well as to compare the performance of state-of-the-art SMT
solvers outside the SM'T competition.

Table 4 evidences that in scheduling problems (rcpsp, depot-placement, rcpsp-
max, wwtp and bacp) the performance of £zn2smt with Yices 2 is much better than
that of other FLATZINC solvers. These problems have a rich Boolean component
(Boolean variables and disjunctions). We have proposed the hypothesis that the
more Boolean component the problem has, the better the performance of fzn2smt
is with respect to Gecode.® This hypothesis seems quite reasonable, because the
greater the Boolean component is, the better the SMT solver is supposed to profit
from built-in techniques such as unit propagation, learning and backjumping. We
have also provided statistical tests that support this hypothesis.

We recall that SMT solvers have been developed for solving verification prob-
lems that typically are small but hard. As pointed out by de Moura in [18], the
efficiency of a solver is strongly dependent on its predefined strategies. Hence
changing these heuristics could dramatically affect the SMT solver performance in
other problem domains. We believe that there is much room for improvement in
solving CSPs with SMT. For instance, apart from the possibility of controlling the
solver strategies, we think that developing theory solvers for global constraints is
also a promising research line. In fact, there exist already some promising results
in this direction, for instance, for the alldifferent theory [7]. On the other hand,
we think that better results could be obtained if directly translating from the
MiNIZINC language to SMT and avoiding some of the flattening. In doing so, most
clever translations could be possible and probably less variables could be gener-
ated. For instance, MINIZINC disjunctions of arithmetic constraints are translated
into FLATZINC constraints by reifying them with auxiliary Boolean variables. In
our approach this step is not needed since it is already done by the SMT solver.

A better approach to optimization in SMT is also a pending issue. This has
been, in a sense, recently addressed in [17] by introducing a theory of costs.

In conclusion, we think that the potential of the SAT and SMT ideas and
technology has still not been sufficiently considered by the CP community. A
relevant work in this direction is that of [29], where finite domain propagation
is mimicked by (lazily) mapping propagators into clauses in a SAT solver. This
way, crucial elements of modern SAT technology (such as two watched literals,
1UIP nogoods and conflict directed backjumping) are indirectly incorporated into
a CSP solver, providing very good results in hard scheduling problems without the
need of complex search strategies. Related to this let us mention that, although
not eligible for prizes, the true winner of the MINIZINC challenges 2010 and 2011
(in all categories) was Chuffed, a solver developed by the MINIZINC group with
lazy clause generation in mind. This solver reached orders of magnitude in search
reduction on appropriate problems, compared to when running itself with lazy
clause generation disabled.

8 Gecode is the second best system considering the total number of solved instances.
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Hence, it is apparent that more cross-fertilization between the CP and the
SAT and SMT communities is necessary in order to tackle real-world problems

properly.

Acknowledgements We thank Santiago Thié-Henestrosa for helping us with the statistical
tests.
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