Triangulation

- **Partition** polygon P into non-overlapping triangles using diagonals only.

- **Is this always possible for any simple polygon?** If not, which polygons are triangulable.

- **Does the number of triangles depend on the choice of triangulation?** How many triangles?

- **Triangulation** reduces complex shapes to collection of simpler shapes. **First step of many advanced algorithms.**

- **Many applications:** visibility, robotics, mesh generation, point location etc.
Triangulation Theorem

1. Every simple polygon admits a triangulation.

2. Every triangulation of an \(n \)-gon has exactly \(n - 2 \) triangles.

3. Polygon in picture has \(n = 13 \), and 11 triangles.

4. Before proving the theorem and developing algorithms, consider a cute puzzle that uses triangulation: Art Gallery Theorem.
Theorem: Every polygon has a triangulation.

- Proof by Induction. Base case $n = 3$.

- Pick a convex corner p. Let q and r be pred and succ vertices.
- If qr a diagonal, add it. By induction, the smaller polygon has a triangulation.
- If qr not a diagonal, let z be the reflex vertex farthest to qr inside $\triangle pqr$.
- Add diagonal pz; subpolygons on both sides have triangulations.
Theorem: Every triangulation of an \(n \)-gon has \(n - 2 \) triangles.

- Proof by Induction. Base case \(n = 3 \).

- Let \(t(P) \) denote the number of triangles in any triangulation of \(P \).

- Pick a diagonal \(uv \) in the given triangulation, which divides \(P \) into \(P_1, P_2 \).

- \(t(P) = t(P_1) + t(P_2) = n_1 - 2 + n_2 - 2 \).

- Since \(n_1 + n_2 = n + 2 \), we get \(t(P) = n - 2 \).
Triangulation History

1. A really naive algorithm is $O(n^4)$: check all n^2 choices for a diagonal, each in $O(n)$ time. Repeat this $n - 1$ times.

2. A better naive algorithm is $O(n^2)$; find an ear in $O(n)$ time; then recurse.

3. First non-trivial algorithm: $O(n \log n)$ [GJPT-78]

5. Linear time algorithm insanely complicated; there are randomized, expected linear time that are more accessible.

6. We content ourselves with $O(n \log n)$ algorithm.
Algorithm Outline

1. **Partition polygon into trapezoids.**

2. **Convert trapezoids into monotone subdivision.**

3. **Triangulate each monotone piece.**

4. A polygonal chain C is **monotone w.r.t.** line L if any line orthogonal to L intersects C in at most one point.

5. A polygon is monotone w.r.t. L if it can be decomposed into two chains, each monotone w.r.t. L.

6. In the Figure, L is x-axis.
Trapezoidal Decomposition

- Use plane sweep algorithm.
- At each vertex, extend vertical line until it hits a polygon edge.
- Each face of this decomposition is a trapezoid; which may degenerate into a triangle.
- Time complexity is $O(n \log n)$.
Monotone Subdivision

- Call a reflex vertex with both rightward (leftward) edges a split (merge) vertex.
- Non-monotonicity comes from split or merge vertices.
- Add a diagonal to each to remove the non-monotonicity.
- To each split (merge) vertex, add a diagonal joining it to the polygon vertex of its left (right) trapezoid.

A monotone piece
Monotone Subdivision

- Assume that trap decomposition represented by DCEL.
- Then, matching vertex for split and merge vertex can be found in $O(1)$ time.
- Remove all trapezoidal edges. The polygon boundary plus new split/merge edges form the monotone subdivision.
- The intermediate trap decomposition is only for presentation clarity—in practice, you can do monotone subdivision directly during the plane sweep.
Triangulation
Triangulation

- \(\langle v_1, v_2, \ldots, v_n \rangle \) sorted left to right.
- Push \(v_1, v_2 \) onto stack.
- for \(i = 3 \) to \(n \) do
 - if \(v_i \) and \(\text{top}(\text{stack}) \) on same chain
 - Add diagonals \(v_i v_j, \ldots, v_i v_k \), where \(v_k \) is last to admit legal diagonal
 - Pop \(v_j, \ldots, v_{k-1} \) and Push \(v_i \)
 - else
 - Add diagonals from \(v_i \) to all vertices on the stack and pop them
 - Save \(v_{\text{top}} \); Push \(v_{\text{top}} \) and \(v_i \)

![Diagram showing sweep line and vertices](image-url)
Correctness

- **Invariant:** Vertices on current stack form a single reflex chain. The leftmost unscanned vertex in the other chain is to the right of the current scan line.

New stack: (bot, ..., vk, vi)
Case I

New stack: (vj, vi)
Case II
Time Complexity

- A vertex is added to stack once. Once it’s visited during a scan, it’s removed from the stack.

- In each step, at least one diagonal is added; or the reflex stack chain is extended by one vertex.

- Total time is $O(n)$.

- Total time for polygon triangulation is therefore $O(n \log n)$.