A planar subdivision is a structure induced by a set of line segments in the plane that can only intersect at common endpoints. It consists of vertices, edges, and faces.
Subdivisions

Vertices are the endpoints of the line segments

Edges are the interiors of the line segments

Faces are the interiors of connected two-dimensional regions that do not contain any point of any line segment

Objects of *the same* dimensionality are **adjacent** or not; objects of *different* dimensionality are **incident** or not
Subdivisions

Exactly one face is unbounded, the outer face

Every other face is bounded and has an outer boundary consisting of vertices and edges

Any face has zero or more inner boundaries
Subdivisions

Vertices, edges, and faces form a partition of the plane.

If a planar subdivision is induced by n line segments, it has exactly n edges, and at most $2n$ vertices.
And how many faces?

Observe: Every face is bounded by at least 3 edges, and every edge bounds at most 2 faces \Rightarrow
$F \leq 3 \cdot (E/2) = 3n/2 = O(n)$

Exception: there are less than 3 edges, and the only face is the outer face
Euler’s formula: If S is a planar subdivision with V vertices, E edges, and F faces, then $V - E + F \geq 2$, with equality iff the vertices and edges of S form a connected set.

\[\begin{align*}
V &= 9, \quad E = 10, \quad F = 4 \\
V - E + F &= 3
\end{align*}\]

\[\begin{align*}
V &= 11, \quad E = 12, \quad F = 4 \\
V - E + F &= 2
\end{align*}\]
A subdivision representation has a vertex-object class, an edge-object class, and a face-object class.

It is a pointer structure where objects can reach incident (or adjacent) objects easily.
Use the **edge** as the central object

For any edge, exactly two vertices are incident, exactly two faces are incident, and zero or more other edges are adjacent
Representing subdivisions

Use the **edge** as the central object, and give it a direction

Now we can speak of Origin, Destination, Left Face, and Right Face
Representing subdivisions

Four edges are of special interest

next edge for \(f_{\text{left}} \)

next edge for \(f_{\text{right}} \)

previous edge for \(f_{\text{left}} \)

previous edge for \(f_{\text{right}} \)
It would be nice if we could traverse a boundary cycle by continuously following the next edge for \(f_{\text{left}} \) or \(f_{\text{right}} \)

... but, no consistent edge orientation needs to exist
Representing subdivisions

We apply a trick/hack/impossibility: split every edge length-wise(!!) into two half-edges

Every half-edge:
- has exactly one half-edge as its Twin
- is directed opposite to its Twin
- is incident to only one face (left)
The doubly-connected edge list is a subdivision representation structure with an object for every vertex, every half-edge, and every face.

A vertex object stores:
- Coordinates
- **IncidentEdge** (some half-edge leaving it)

A half-edge object stores:
- **Origin** (vertex)
- **Twin** (half-edge)
- **IncidentFace** (face)
- **Next** (half-edge in cycle of the incident face)
- **Prev** (half-edge in cycle of the incident face)
A face object stores:

- **OuterComponent** (half-edge of outer cycle)
- **InnerComponents** (list of half-edges for the inner cycles bounding the face)
Question: A half-edge \vec{e} can directly access its Origin, and get the coordinates of one endpoint. How can it get the coordinates of its other endpoint?

Question: For a vertex v, how do we find all adjacent vertices?
The doubly-connected edge list

A vertex object stores:
- Coordinates
- **IncidentEdge**
 - *Any attributes, mark bits*

A face object stores:
- **OuterComponent**
 - (half-edge of outer cycle)
- **InnerComponents**
 - (half-edges for the inner cycles)
 - *Any attributes, mark bits*

A half-edge object stores:
- **Origin** (vertex)
- **Twin** (half-edge)
- **IncidentFace** (face)
- **Next** (half-edge in cycle of the incident face)
- **Prev** (half-edge in cycle of the incident face)
 - *Any attributes, mark bits*