GPU-based Computation of Distance Functions
on Road Networks with Applications

Marta Fort
Institut d’Informatica i Aplicacions
Universitat de Girona, Spain

mfort@ima.udg.edu

ABSTRACT

We present a GPU-based algorithm for computing discretized
distance functions on road networks. As applications, we
provide algorithms for computing discrete Order-k Network
Voronoi diagrams and for approximately solving k-Nearest
Neighbor queries and Aggregate k-Nearest Neighbor queries
on road networks. Finally, we present experimental results
obtained with the implementation of our algorithms.

Categories and Subject Descriptors

H.2.8 [Database applications]: Spatial Databases and
GIS; H.4.2 [Information Systems Applications]: Deci-
sion Support

General Terms

Algorithms, design, experimentation

Keywords

Road networks, proximity queries, graphics hardware

1. INTRODUCTION

A Road Network Database allows to efficiently store and
query objects in road networks. Static objects are repre-
sented by points of interest located on the network (hotels
or gas stations) and moving objects are represented as points
running along the network (cars or pedestrians). The net-
work distance between objects on the road network (car and
gas station), defined as the cost of the shortest path between
them, depends on the connectivity and weights of the un-
derlying network.

Computing shortest paths, and consequently network dis-
tances, is a fundamental combinatorial optimization prob-
lem with important applications in various domains, like
Geographic Information Systems, Location-Based Services,
Navigation Systems, Mobile Computing Systems, Data Clus-
tering, etc. The computation of network distances often
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arises as a subroutine in the solution of many proximity
problems. The Order-k Network Voronoi diagram of a set
of points of interest, called sites, on a network associates to
each subset of size k of sites the part of the network that
consists of points closer to those k sites than any other k
sites. Network Voronoi diagrams allow to answer proximity
point queries like finding the Nearest Neighbor, the Far-
thest Neighbor and the k-Nearest Neighbors. Given a set of
sites and a set of query points on the network, Aggregate
k-Nearest Neighbor queries try to determine a subset of k
sites that minimizes some aggregate distance function (max,
sum, etc.) with respect to a query point set.

1.1 Preliminaries

We model a road network as an undirected weighted graph
N(V,E,W). The set V, n = |V|, is a set of vertices rep-
resenting road intersections (with degree above 2), terminal
points (with degree 1) and shape points (with degree 2).
Shape points are neither intersection nor terminal points
that are interpolated to create sequences of arbitrarily small
linear parts of the road network. The spatial position of each
vertex in V with respect to a reference coordinate system is
also given. The set E, m = |E|, is a set of edges representing
road segments, each connecting two vertices. W : E — RT
associates each edge e with a positive weight w(e), that may
represent, for example, the Euclidean length of e, denoted
le], or the time, toll, energy consumption, etc, required to
travel between the two endpoints of e. A portion € of and
edge e connecting to points of e is called subedge. We de-
fine the weight w(€) of the subedge € as w(e) = ([e|/|e|)w(e).
In this paper we consider static road networks with a fixed
weight for each edge. We denote by A the set of all points on
the edges, including the vertices, of N(V, E,W). Although
in the worst case a graph could be dense (m = O(n?)), in
general graphs modelling networks have constant degree and
consequently are sparse (m = ©(n)). We want to note that
for simplicity we have modelled a road network as an undi-
rected graph, but that our methods can be easily applied to
road networks modelled as a directed graph, in which one-
way roads or roads where the weight is different for the two
directions are allowed.

A path 7(p,q) between two points p and ¢, p located on
edge (vo,v1) and ¢ located on edge (v;,vi11), is a sequence
[p,v1,- -+, v, q], where vi,---,v; € V and (vi—1,vi) € E,
1 < i < 1. The cost of the path m(p,q) is defined by
I7(p, @)l = w®vr) + 32, i<y wWi—102) + w(quiys) - The
path of least cost connecting p and q is called shortest path
between p and q. The cost of the shortest path is called the
network distance between p and ¢, denoted d(p, ¢). In the
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following, for simplicity, we use the term distance to refer
to the network distance. The distance function defined by a
site p on N is a function d, such that for any point ¢ € N,
dp(q) is the distance d(p, q) between p and g.

1.2 Network Voronoi Diagrams

Let P be a set of r static sites lying on the road network
N. Given P’ a subset of k sites of P, k € {1,---,r — 1},
the Order-k Voronoi region V(P’) of P’ is the set, possibly
empty, of points of A/ closer to each site of P’ than to any
other site of P: V(P') = {q € N | dy(q) < dp(q) VD' €
P'.p € P — P'}. The Order-k Network Voronoi diagram
of P, denoted Vi (P), is the set of the Order-k Voronoi re-
gions V(P') of all subsets P’ of k sites. When k = 1 and
k = r—1, the Order-k Network Voronoi diagrams are called
the (Closest) Network Voronoi and the Furthest Network
Voronoi diagram, respectively (see Figures 4 and 5).

1.3 Nearest Neighbor Queries

Given the set P of sites and a query point ¢ on the net-
work, a k-Nearest Neighbor (k-NN) query finds the subset of
k sites which are closest to g. Formally, NN (P, q) retrieves
a subset P’ C P, |P'| = k, such that dp(¢q) < dp(q),Vp €
P',p' € P—P'. An example of k-NN query is a query initi-
ated by a GPS device in a car to find the five closest hotels
to the car.

Continuous k-Nearest Neighbor (C-k-NN) queries are de-
fined as the k-NNs of all points on a network (i.e., continu-
ous with respect to the network). For example, continuously
finding the five nearest hotels to a moving car. The result
of this type of query is a set of intervals, bounded by split
points, and their corresponding list of k-NNs. The split
points specify where on the network the k-NNs of a moving
query object change, and the intervals specify the locations
where the k-NNs of a moving object remain the same. The
Order-k Network Voronoi diagram subdivides the network
into intervals according to the k nearest neighbors and con-
sequently allows to answer Continuous k-NNs queries.

1.4 Aggregate Nearest Neighbor Queries

An Aggregate k-Nearest Neighbor (A-k-NN) query re-
turns the k sites with the better score according to an aggre-
gate distance function with respect to a set of query points.
For example, several users at specific locations (query points)
that want to find the three restaurants (sites), which leads
to the minimum sum of distances that they have to travel
in order to meet. Formally, given a set P of sites, a set
Q of query points, P and Q located on N, and an integer
1 < k < |P|, several discrete aggregate nearest neighbor
queries depending on P, Q and k are defined as follows:

MinMax (P,Q): retrieves a subset P’ C P, |P'| = k, such
that mazgeqdy (¢) < mazqeqdy(q),Vp' € P',p € P—P'.

MinSumy (P,Q): retrieves a subset P’ C P, |P’| = k, such
that > o dp(q) < 3 ,cqdp(q),Vp' € P',p € P~ P

MaxMing (P,Q): retrieves a subset P’ C P, |P'| = k, such
that mingeqd,y (q) > mingeqdy(q) ,Vp' € P'.p € P—P'.

MaxSumy (P,Q): retrieves a subset P’ C P, |P’| = k, such
that >- o dp(q) > 3, dn(q),Vp' € P',p € P—P".
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1.5 Graphics Hardware

The increasing programmability and high computational
rates of graphics processing units (GPUs) make them at-
tractive as an alternative to CPUs for general-purpose com-
puting. Recently, different algorithms and applications that
exploit the inherent parallelism, easy programmability and
vector processing capabilities of GPUs have been proposed
[15]. In particular, in the field of data engineering there ex-
ist several algorithms that have a fast hardware-based im-
plementation [5, 12].

The graphics pipeline [18] is divided into several stages.
The input is a list of 3D geometric primitives expressed as
vertices defining points, lines, etc. with attributes associ-
ated. The output is an image in the frame buffer, a col-
lection of several hardware buffers corresponding to two di-
mensional grids whose cells are called pixels. In the first
stage of the pipeline, per-vertex operations take place, each
input vertex is transformed from 3D coordinates to window
coordinates. Next stage is rasterization, when it finishes we
obtain a fragment, with its associated attributes, for each
pixel location covered by a geometric primitive. Fragment
attributes are obtained from the attributes associated to the
vertices by linear interpolation. The third stage, the frag-
ment stage, computes the color for each pixel in the frame
buffer, according to the fragments corresponding to it tak-
ing into account a series of tests such as the depth test and
per-fragment operations. This output can be transferred
to the CPU or stored as a texture, a 2D array of values,
and then used in additional computations. The unique pro-
grammable parts of the graphics pipeline are the vertex and
fragment shaders which are executed on a per-vertex and
per-fragment basis, respectively. They are used to change
the vertex or fragment attributes.

1.6 Previous Work

Practical and robust algorithms for computing the exact
Voronoi diagram of a set of point sites in 2D and 3D have
been extensively developed in computational geometry [14].
Different algorithms have been proposed to efficiently com-
pute 2D and 3D approximated Voronoi diagrams of a set of
generalized sites (points, segments, etc) along a grid using
graphics hardware [7, 4]. Voronoi diagrams in networks and
their applications have been studied in [6, 13].

Nearest Neighbor queries and Continuous Nearest Neigh-
bor queries in road networks have been investigated exten-
sively [16, 9, 10, 8, 11, 1, 2]. The majority of these works
present solutions mainly focused on spatial index structures
and query processing techniques. Aggregate Nearest Neigh-
bor queries in road networks have been studied in [20].

1.7 Our Contribution

We present an algorithm, that exploits graphics hardware
capabilities, to compute discretized distance functions on
road networks. As applications, we provide algorithms to
compute discrete Order-k Network Voronoi diagrams and for
approximately solving k-Nearest Neighbor queries and Ag-
gregate k-Nearest Neighbor queries on road networks. Our
algorithms aim to optimize CPU/GPU processing cost while
other techniques focus on reducing the communication cost
overhead caused by frequent updates. Finally, we present
experimental results obtained with the implementation of
our algorithms.



2. DISTANCE FUNCTION COMPUTATION

We compute the distance from a given site p on N to
all vertices of V' by using the classical Dijkstra’s algorithm
[3]. Dijkstra’s algorithm computes the shortest path from
site p to all vertices of V by incrementally growing a tree
of shortest paths from p out to the most distant vertices.
Dijkstra’s algorithm for sparse graphs, like road networks,
has O(nlogn) asymptotic time complexity for an undirected
weighted graph with n vertices [19]. In order to reduce com-
putation times several speed-up techniques have been devel-
oped during the last years [19, 17]. However, since most
proximity queries are interested in local areas, Dijkstra’s al-
gorithm is efficient enough for our purposes.

Now we face the most general problem of computing the
distance from a given site p to any point on N. Since the
continuous nature of the problem makes it difficult to ef-
ficiently compute this distance, we propose an alternative
solution based on a discretization (approximation) process
that allows us to explicitly store the distance function on a
compact way.

2.1 Road Network Parameterization

Let R be a rectangular grid of the xy-plane of size W x
H. We map each edge e of the road network A to a row
segment of R represented by the centers of its cells (see
Figure 1). The mapping optimally packs the mapped edges
into R so that: a) the mapping of two different edges of
N do not overlap in R; b) the mapping of all edges of N
covers "almost” all grid cells of R, it is to say, the number
of row cells covered by the mapping of e ”approximately”
equals WH|el/ Y. . |€']. In this way we obtain a discrete
parameterization of the road network A in the sense that
each cell in the grid map represents a unique location on the
road network.

Figure 1: Road Network Parameterization.

2.2 Distance Function Discretization

To compute explicitly the distance function d, defined by
a site p on A/ we represent the discretized rectangular region
R into a grid of W x H pixels by the depth buffer where
distance values will be stored (see Figure 2).

During the initialization process of Dijkstra’s algorithm,
we initialize the depth buffer to the maximal depth value
(1). When a new fragment is processed, the depth buffer is
updated if the depth value of the current fragment is smaller
than the current value in the depth buffer. At the end of the
process the value stored in the depth buffer is the minimum
depth (distance) defined by all the processed fragments. The
discrete representation of the distance function is obtained
during the distance function propagation process.

The OpenGL pipeline processes the edge vertices and ras-
terizes the edges into fragments by interpolation. The pla-
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nar mapping is used to map the points on the edges of N to
points onto the discretized rectangular region R of the xy-
plane. Within the rasterization step all the parameters asso-
ciated to vertices such as texture coordinates, color, etc, are
linearly interpolated across the segments interior from those
associated to the edge vertices. Consequently the value ob-
tained in these channels in a fragment is the interpolation
of the values associated to the edge vertices. Then the frag-
ment shader computes the distance defined by the source at
each point and sets this distance normalized into [0,1] as the
depth value of the rasterized fragments. Finally, the depth
test stores the minimum distance obtained at each position.

7 >
777 7 / 7 7 7 7
i i L L Lo

Figure 2: Discrete distance function.

3. APPLICATIONS

In the following, we assume that each site in P has an
identifying associated color, and that the discrete distance
functions of all the sites have already been computed and
stored.

3.1 Order-x Network Nearest Diagram

The k-Nearest region associated with a given site in P
is the set of points on the road network such that the site
ranks number k in the ordering of the sites by distance from
the point, and is a collection of one or more unconnected
intervals. Each of these regions forms the so-called Order-%
Network Nearest Diagram, that coincides with the k-level
of the arrangement defined by the distance functions of the
site in P.

The Order-k Network Nearest Diagram can be obtained
with a multi-pass algorithm, that at every pass ”peels” off
one level of the arrangement [4]. At each pass all the dis-
tance functions are painted in their corresponding color by
defining a rectangle covering R, and the minimal depth value
is stored in the depth buffer. In the first pass the closest
Voronoi diagram is obtained. When it finishes, the depth
buffer is transferred to a texture and send to the fragment
shader. In the second pass all the distance functions are
again painted. In the fragment shader the distance function
that is being painted is compared with the distance obtained
in the previous pass at the current fragment. Only the frag-
ments with distance bigger than the distance obtained in the
previous pass are painted, the others are discarded. There-
fore, the values stored in the depth buffer in the second step
are the second minimal distance. When this process is re-
peated k times, the kth-nearest diagram represented on R is



obtained. By using typical texturing methods and the pa-
rameterization the Order-k Network Nearest Diagram can
be represented on the network (see Figure 3).

Figure 3: Order-2 Nearest Network Voronoi Dia-
gram of three sites.

3.2 Order-k Network Voronoi Diagrams

The k-order Voronoi diagram can be obtained by overlay-
ing the Order-i Network Nearest diagrams, i = 1...k, with
transparency 1/k.

The particular cases of the Closest and Furthest Network
Voronoi Diagrams can be obtained by painting one after the
other all the distance functions in their associated colors and
storing, in the depth buffer, the minimal or the maximal
depth value, respectively. Figures 4 and 5 show Network
Voronoi diagrams with three and 100 facilities, respectively.

Figure 5:

Network Voronoi Diagram of 100 sites.
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3.3 k-Nearest Neighbor queries

We propose an algorithm for queries involving an arbitrary
number k of neighbors. To answer a k-Nearest Neighbor
query on a point ¢ we sample each of the Order-i Network
Nearest diagrams at q, for ¢ = 1, .., k, so that the colors of
the k samples identify the sites. Furthermore, the sites may
be reported sorted by the distance to the query point.

3.4 Aggregate k-Nearest Neighbor queries

We can also answer discrete Aggregate k-NNs queries.
Now we are given the set P of r sites and a set @ of | query
points. We are interested in obtaining the set P’ of k sites of
P that fulfill different properties depending on the problem
we are solving. We have to compute, for each p € P: a)
mazqeqdy(q); b) quQ dp(q); ¢) mingeqdy(q). Notice that
we have to find the maximum, sum or minimum of [ real
numbers. It can be done with graphics hardware by using
a single pixel to obtain the minimum, sum or maximum of
these values. Since it has to be done for each site p € P,
we associate a different pixel to each site. The pixel repre-
senting site p is painted [ times with different depth values
corresponding to dy,(q) for each ¢ € Q. Then the maximum,
sum or minimum is obtained by properly using the depth
test or the explained technique to obtain the sum of all the
values. Discrete Aggregate k-NN queries are solved as fol-
lows:

MinMax (P,Q): we compute mazqecqdy(q) for each p €
P and next find the k pixels with minimum values. It can
be done by using a reduction type algorithm to find the
minimum together with a peeling-technique to obtain the
k smaller values or by reading the pixels in the CPU and
finding the k-minimum values in the CPU.

MinSum, (P,Q): we compute }° ., dp(q) for eachp € P
and next find the k pixels with minimum values, as it is
explained for the MinMaxy, (P,Q) case.

MaxMing (P,Q): we compute mingeqdy(q) for each p €
P and next find the k pixels with maximum values, as it
is explained for the previous cases but storing the maximal
values instead of the minimal ones.

MaxSum; (P,Q): we compute 3 ., dp(q) for each p €
P and next find the k pixels with maximum values, as it is
explained for the MaxMiny case.

3.5 Error Analysis

In the results, we can distinguish among two different
types of error: a) The discretization error that depends on
the discretization size, the biggest the grid size the smallest
the error. b) The floating errors, which are specially related
to the depth buffer and depth texture precision. The 32-
bit precision is sufficient to store the normalized distances
which take values in the interval [0, 1].

4. EXPERIMENTAL EVALUATION

We have implemented the proposed methods using C++,
OpenGL and Cg. All the experiments have been carried out
on a Intel Core2 Duo at 2.40GHz with 2GB of RAM and a
NVIDIA GeForce 8600 GT graphics board.

We have used four real road networks: 1) Rock Island de-
fined by 13,442 nodes and 12,865 edges; 2) Washington with
81,389 nodes and 100,703 edges; 3) Nevada with 280,942



nodes and 338,205 edges; 4) New York with 724,366 nodes
and 910,310 edges.

In Table 1 we provide the time, in seconds, needed dur-
ing: the parameterization computation, Dijkstra’s algorithm
execution and the distance function discretization process.
The time needed by Dijkstra’s algorithm execution and the
distance function discretization process is the average time
of 100 executions realized considering sites randomly placed
on the road network.

Table 1: Computation times.

n Parametrization | Dijkstra | Distance Func.
10,442 0.030 0.006 0.04
81,389 0.032 0.05 0.07
280,942 0.104 0.20 0.16
724,366 0.28 0.55 0.34

In Table 2 we present, in seconds, the time needed to com-
pute, from already computed distance functions, Order-k
Voronoi diagrams. Times provided in this table only depend
on |P|, k and the discretization size, which is 1280 x 882.

Table 2: Order-k Voronoi diagram computation.

P[[k=1] k=10 | k=25 | k=150 | k=100
50 || 0.81 | 7.16 | 17.49 N -
100 || 1.51 | 14.05 | 14.86 | 69.75 -
200 || 2.89 | 27.97 | 69.57 | 109.41 | 278.24

k-NN queries are answered by using the already computed
and stored Order-i Network Nearest diagrams, ¢ < k. The
time needed to obtain the Order-i Network Nearest diagram
is that needed to compute the Order-k£ Voronoi diagram with
extra 0.06 seconds for each stored diagram. Then answering
a k-NN query takes 0.001 seconds for £ = 10 and 0.0011
seconds for k = 50.

The time needed to answer an Aggregate k-NN query,
k = 5, when 10 sites and 10 point queries are considered
is of 0.06 seconds for MaxMin and MinMax queries and of
0.09 seconds for MaxSum and MinSum queries. If 50 sites
and 30 point queries are considered, MinMax and MaxMin
queries are answered again in 0.06 seconds, and MaxSum
and MinSum in 0.013 seconds. Times do not change if we
consider k = 15 or k = 20.

We want to remark that, according to the presented algo-
rithms and experimental results, the number of nodes and
edges of the road network only affects the time needed to
compute distance functions.

5. FUTURE WORK

We plan to extend our GPU-based approach to solve Re-
verse k-Nearest Neighbor queries and some Facility Location
problems such as the 1-Center and 1-Median, and the Ob-
noxious 1-Center and 1-Median.
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