Finding Hard Instances of Satisfiability in Łukasiewicz Logics

Miquel Bofill
UdG
Girona, Spain
Felip Manyà
IIIA–CSIC
Bellaterra, Spain
Amanda Vidal
IIIA–CSIC
Bellaterra, Spain
Mateu Villaret
UdG
Girona, Spain

Abstract

One aspect that has been poorly studied in multiple-valued logics, and in particular in Łukasiewicz logics, is the generation of instances of varying difficulty for evaluating, comparing and improving satisfiability solvers. In this paper we present a new class of clausal forms, called Łukasiewicz (Ł-)clausal forms, motivate their usefulness, study their complexity, and report on an empirical investigation that shows an easy-hard-easy pattern and a phase transition phenomenon when testing the satisfiability of Ł-clausal forms.

1 Introduction

The proof theory of multiple-valued logics, as well as its complexity, have been deeply studied for a wide variety of logics [1, 10, 11]. However, the development of satisfiability solvers has received less attention despite of the fact that, without competitive solvers, it is extremely difficult to apply multiple-valued logics to solve real-world problems.

In the quest for developing fast satisfiability solvers it is crucial to have both random and structured challenging instances for evaluating and comparing solvers, as happens in close areas such as Boolean satisfiability testing and constraint programming.

Given the recent development of Satisfiability Modulo Theory-based (SMT-based) SAT solvers for multiple-valued logics [2, 3, 13, 14], as well as the need of empirically evaluating and comparing them with other existing approaches, the objective of this paper is to develop a suitable benchmark for satisfiability testing in Łukasiewicz logics. The ultimate goal is to devise a random generator of instances of varying difficulty.

More specifically, this paper starts by analyzing how the Conjunctive Normal Forms (CNFs) used by SAT solvers can be extended to Łukasiewicz logics. In a first attempt, we replace the classical disjunction in Boolean CNFs with Łukasiewicz strong disjunction, and interpret negation using Łukasiewicz negation. Curiously, it turns out that the satisfiability problem of these clausal forms can be solved in linear time in the length of the formula, regardless of the size of the clauses and the cardinality of the truth value set (assuming it is greater than two). This result is surprising because deciding the satisfiability of Boolean CNFs is NP-complete when there are clauses with at least three literals [9].

To produce computationally difficult instances we then define a new class of clausal forms, called Łukasiewicz (Ł-)clausal forms, that are CNFs in which, besides replacing classical disjunction with Łukasiewicz strong disjunction, we allow negations above the literal level; i.e., clauses are strong disjunctions of terms, and terms are either literals or negated strong disjunctions of literals. We show that, in this case, 3-SAT is NP-complete while 2-SAT has linear-time complexity. Hence, these problems have the same complexity as their Boolean counterparts.

Moreover, we report on an empirical investigation in which we identify —when testing the satisfiability of Ł-clausal forms having a fixed number of literals per clause, and generated uniformly at random— an easy-hard-easy pattern, and a phase transition phenomenon as the clause-to-variable ratio varies. It turns out that there is a point where the hardest instances occur. Such a point is between an under-constrained region where the instances are almost surely satisfiable, and an over-constrained region where the instances are almost surely unsatisfiable. In the transition region, there is a threshold where roughly half of the instances are satisfiable, and half of the instances are unsatisfiable. So, we have a generator that is able to produce both satisfiable and unsatisfiable instances of varying difficulty.

The paper is structured as follows. Section 2 defines ba-
sic concepts in Łukasiewicz logics. Section 3 defines two
types of clausal forms with Łukasiewicz strong disjunction
and Łukasiewicz negation. We show that the satisfiability
problem is decidable in linear time for the first type of
clausal forms but is NP-complete for the second type. Sec-
tion 4 reports on an empirical investigation that shows an
easy-hard-easy pattern and a phase transition phenomenon
when testing the satisfiability of the second type of clausal
forms. Section 5 concludes and points out future research
directions.

2 Preliminaries

Definition 1. A propositional language is a pair
\(\mathcal{L} = < \Theta, \alpha > \), where \(\Theta \) is a set of logical connectives and \(\alpha : \Theta \to \mathbb{N} \) defines the arity of each connective.
Connectives with arity 0 are called constants. A language
\(\langle \Theta, \alpha > \) with a finite set of connectives \(\Theta = \{ \theta_1, \ldots, \theta_r \} \)
is denoted by \(\langle \theta_1/\alpha(\theta_1), \ldots, \theta_r/\alpha(\theta_r) > \).

Given a set of propositional variables \(\mathcal{V} \), the set \(\mathcal{L}_V \) of
\(\mathcal{L} \)-formulas over \(\mathcal{V} \) is inductively defined as the smallest set
with the following properties: (i) \(\mathcal{V} \subseteq \mathcal{L}_V \); (ii) if \(\theta \in \Theta \) and \(\alpha(\theta) = 0 \), then \(\theta \in \mathcal{L}_V \); and (iii) if \(\phi_1, \ldots, \phi_m \in \mathcal{L}_V \),
\(\theta \in \Theta \) and \(\alpha(\theta) = m \), then \(\theta(\phi_1, \ldots, \phi_m) \in \mathcal{L}_V \).

Definition 2. A many-valued logic \(\mathcal{L} \) is a triplet \((\mathcal{L}, N, A) \)
where \(\mathcal{L} = < \Theta, \alpha > \) is a propositional language, \(N \) is
a truth value set, and \(A \) is an interpretation of the operation
symbols that assigns to each \(\theta \in \Theta \) a function
\(A_\theta : N^{\alpha(\theta)} \to N \).

Many-valued logics are equipped with a non-empty sub-
set \(D \) of \(N \) called the designated truth values, which are the
truth values that are considered to affirm satisfiability.

Definition 3. Let \(\mathcal{L} \) be a many-valued logic. An interpreta-
tion on \(\mathcal{L} \) is a function \(I : \mathcal{V} \to N \). \(I \) is extended to arbitrary formulas \(\phi \) in the usual way:

1. If \(\phi \) is a logical constant, then \(I(\phi) = A_\phi \).
2. If \(\phi = \theta(\phi_1, \ldots, \phi_r) \), then \(I(\theta(\phi_1, \ldots, \phi_r)) =
 A_\theta(I(\phi_1), \ldots, I(\phi_r)) \).

A formula \(\phi \) is satisfiable iff there is an interpretation
such that \(I(\phi) \in D \).

Through this work, we focus in a particular family of
many-valued logics: the finite-valued and infinitely-valued
Łukasiewicz logics. These were born from the generaliza-
tion of a three valued logic proposed by J. Łukasiewicz in
the early 20th century, and have been deeply studied both
from theoretical and practical points of view. For a deeper
study on these matters, see for instance [10].

The language of Łukasiewicz logic is given by
\[\mathbb{L}_{\text{Łuk}} = \langle \neg, /2, \land/2, \lor/2, \ominus/2, \oplus/2 > \] .

We refer to \(\neg \) as negation, \(\rightarrow \) as implication, \(\land \) as weak
conjunction, \(\lor \) as weak disjunction, \(\ominus \) as (strong) conjunction,
and \(\oplus \) as (strong) disjunction.

Definition 4. The infinitely-valued Łukasiewicz logic, de-
noted by \([0,1]_\mathcal{L} \), is the many-valued logic \((\mathbb{L}_{\text{Łuk}}, N, A_\mathcal{L}) \)
equipped with the set of designated values \(D = \{ 1 \} \), where
\(N \) is the real unit interval \([0,1]\), and the interpretation of the
operation symbols \(A_\mathcal{L} \) is given by:

\[
\begin{align*}
A_\land(x) &= 1 - x \\
A_\lor(x, y) &= \min\{1, 1 - x + y\} \\
A_\ominus(x, y) &= \min\{x, y\} \\
A_\ominus(y, x) &= \max\{x, y\} \\
A_\oplus(x, y) &= \max\{0, x + y - 1\} \\
A_\ominus(x, y) &= \min\{1, x + y\}
\end{align*}
\]

The \(n \)-valued Łukasiewicz logic, denoted by \(\mathcal{L}_n \), is the logic
defined from the infinitely-valued Łukasiewicz logic by
restricting the universe of evaluation to the set \(N_n =
\{0, \frac{1}{n}, \ldots, \frac{n-1}{n}\} \). That is to say, \(\mathcal{L}_n = \langle \mathbb{L}_{\text{Łuk}}, N_n, A_\mathcal{L} \rangle \)
equipped with \(D = \{ 1 \} \). Note that the operations are well
deﬁned because \(N_n \) is a subalgebra of \([0,1]\) with the inter-
pretation of the operation symbols \(A_\mathcal{L} \) (for any operation
\(A_r \) and any value/pair of values of \(N_n \), the result of the \(A_r
\) over this/these values also belongs to \(N_n \)).

The function interpreting negation is called Łukasiewicz
negation, the function interpreting strong conjunction is
called Łukasiewicz t-norm, the function interpreting impli-
cation is called its residuum, and the function interpreting
strong disjunction is called Łukasiewicz t-conorm.

We say that a logic \(\mathcal{L} \) is a Łukasiewicz logic if it is either
\([0,1]_\mathcal{L} \) or \(\mathcal{L}_n \) for some natural number \(n \).

Given a Łukasiewicz logic \(\mathcal{L} \), we denote by \(SAT^\mathcal{L} \) the
set of satisfiable formulas in \(\mathcal{L} \); i.e.,
\[SAT^\mathcal{L} = \{ \phi : I(\phi) = 1 \text{ for some interpretation } I \text{ on } \mathcal{L} \} . \]

The problem of deciding whether or not a formula belongs
to the set \(SAT^\mathcal{L} \) is called the \(\mathcal{L} \)-satisfiability problem.

It is worth mentioning that one of the reasons we focus on
Łukasiewicz logics is because \(SAT^{\text{Bool}} \subseteq SAT^\mathcal{L} \). This is not the case for other relevant logics such as Gödel (\(G \))
and Product (\(\Pi \)), where \(SAT^G = SAT^{\Pi} = SAT^{\text{Bool}}[10] \).
So, while Boolean solvers suﬃce for deciding the satisfiability
of propositional formulas of \(G \) and \(\Pi \), speciﬁc solvers
are needed to decide the satisfiability of propositional for-
mulas of \(\mathcal{L} \).
3 Łukasiewicz Clausal Forms

In Boolean satisfiability, benchmarks are commonly represented in Conjunctive Normal Form (CNF); i.e., as a conjunction of clauses, where each clause is a disjunction of literals. This formalism is very convenient because state-of-the-art Boolean SAT solvers implement variants of the Davis-Putnam-Logemann-Loveland (DPLL) procedure [7], and DPLL requires the input in CNF. Hence, it seems reasonable to ask how Boolean CNFs could be adapted to Łukasiewicz logic in order to define challenging benchmarks for evaluating and comparing Łukasiewicz SAT solvers, as well as in order to develop DPLL-like procedures for Łukasiewicz logic.

At first sight, one could generalize Boolean CNF formulas by replacing classical disjunction with Łukasiewicz strong disjunction, and negation with Łukasiewicz negation:

\[\bigwedge_{1 \leq i \leq n} \left(\bigoplus_{1 \leq j \leq k_i} l_{ij} \right) \]

for \(i, j, k_i, n \in \mathbb{N} \) and \(l_{ij} \) literals. In the following we refer to these formulas as simple Łukasiewicz clausal forms (simple Ł-clausal forms), and denote by \(mc(\varphi) \) the length of the shorter clause in a simple Ł-clausal form \(\varphi \). That is to say, if \(\varphi = \bigwedge_{1 \leq i \leq n} \left(\bigoplus_{1 \leq j \leq k_i} l_{ij} \right) \), then \(mc(\varphi) = \min \{ k_i : 1 \leq i \leq n \} \). Through this work, we assume that simple Ł-clausal forms are interpreted using a truth value set with at least three elements.

Unfortunately, the expressive power of these clausal forms is quite limited. As Lemma 6 shows, the satisfiability problem for simple Ł-clausal forms has linear-time complexity, contrarily to what happens in Boolean SAT, which is NP-complete when there are clauses with at least three literals. Hence, complex problems cannot be encoded using this formalism.

It is quite easy to prove (see Lemma 5) that any simple Ł-clausal form \(\varphi \) is always satisfiable if \(mc(\varphi) \) is greater than two, or if \(mc(\varphi) = 2 \) and the cardinality of the truth value set is odd or infinite. Interestingly, there is a particular case, for finitely-valued logics, that is more subtle: when \(mc(\varphi) = 2 \) and the cardinality of the truth value set is even. In this case, deciding the satisfiability of a simple Ł-clausal form \(\varphi \) turns out to be equivalent to deciding the satisfiability, under Boolean semantics, of the subformula of \(\varphi \) containing exclusively the clauses of \(\varphi \) with length 2; i.e., it is equivalent to deciding the satisfiability of a Boolean 2-SAT instance. We denote such subformula by \(B_2(\varphi) \); i.e., if \(\varphi = \bigwedge_{1 \leq i \leq n} C_i = \bigwedge_{1 \leq i \leq n} \left(\bigoplus_{1 \leq j \leq k_i} l_{ij} \right) \), then

\[B_2(\varphi) = \bigwedge_{C_i \in \varphi, k_i = 2} (l_{ij} \bigvee l_{ij}') \]

For example, the simple Ł-clausal form \(\varphi = (x_1 \oplus x_2) \land (\neg x_1 \oplus x_2) \land (\neg x_1 \oplus \neg x_2) \land (x_1 \oplus x_3) \land (x_2 \oplus x_3) \land (x_1 \oplus \neg x_2 \oplus \neg x_3) \) is satisfiable in \(\mathbb{L}_4 \) because the Boolean 2-SAT instance \((x_1 \lor x_2) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_1 \lor x_3) \land (x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3) \) is satisfiable. However, \(\varphi \) is unsatisfiable under Boolean semantics. Recall that \(SAT^{\text{Bool}} \subset SAT^\mathbb{L} \).

The treatment of formulas with unit clauses (i.e., containing exactly one literal) is done by applying unit propagation (UP). UP consists in applying the unit literal rule until the empty clause is derived or a saturation state is reached. Applying the unit literal rule to an Ł-clausal form \(\varphi \) containing the unit clause \(l_i \) amounts to remove from \(\varphi \) all the clauses containing \(l_i \), and removing in \(\varphi \) all the occurrences of \(\neg l_i \). If we remove a literal from a unit clause, we obtain the bottom element \(\bot \). We denote by \(UP(\varphi) \) the formula obtained after applying \(UP \) to \(\varphi \). \(UP(\varphi) \) is either empty (meaning that it is satisfiable), a formula containing the bottom element \(\bot \) (meaning that there exists a contradiction at the unitary level, and so, the formula is directly unsatisfiable) or \(mc(UP(\varphi)) > 1 \), and so we are in one of the scenarios discussed above.

Formally, we can express the previous results as follows.

Lemma 5. Let \(\varphi \) be a simple Ł-clausal form, and let \(\mathbb{L} \) be a Łukasiewicz logic with a truth value set \(N \) such that \(|N| > 2 \). Then,

1. If \(mc(\varphi) > 1 \), \(\varphi \) belongs to \(SAT^\mathbb{L} \) if one of the following conditions hold:
 \begin{itemize}
 \item \(|N| = 2s + 1 \) for \(s \geq 1 \) or \(|N| \geq N_0 \)
 \item \(mc(\varphi) \geq 3 \)
 \end{itemize}
2. If \(mc(\varphi) = 2 \) and \(|N| = 2s + 2 \) for \(s \geq 1 \), then \(\varphi \) belongs to \(SAT^\mathbb{L} \) iff \(B_2(\varphi) \) belongs to \(SAT^{\text{Bool}} \).
3. If \(mc(\varphi) = 1 \), then \(\varphi \) belongs to \(SAT^\mathbb{L} \) iff \(UP(\varphi) \) belongs to \(SAT^\mathbb{L} \).

Proof. 1. It is easy to see that whenever \(\frac{1}{2} \) belongs to the universe of evaluation (i.e., whenever \(|N| = 2s + 1 \) or \(\mathbb{L} \) is the infinitely valued Łukasiewicz logic), the interpretation that assigns \(\frac{1}{2} \) to each variable satisfies any possible simple Ł-clausal form \(\varphi \) such that \(mc(\varphi) \geq 2 \).

On the other hand, if \(mc(\varphi) \geq 3 \) and \(|N| = 2s + 2 \) for some \(s \geq 1 \) (\(N = \{ 0, \frac{1}{2s+1}, \ldots, \frac{2s+1}{2s+1} \} \)), the interpretation that assigns \(\frac{s+1}{2s+1} \) to each variable \(x \) satisfies any clause of \(\varphi \) in \(\mathbb{L} \). It is clear that \(s + 1 < 2s + 1 \), so \(\frac{s+1}{2s+1} \in N \). On the other hand, by the definition of Łukasiewicz negation, the interpretation of \(\neg x \) is \(1 - \frac{s+1}{2s+1} = \frac{2s}{2s+1} \), and it is routine to check that \(\frac{s+1}{2s+1} > \frac{s}{2s+1} \geq \frac{1}{2} \). Thus, for any clause \(l_1 \oplus \ldots \oplus l_k \) in \(\varphi \), the interpretation of each one of its literals is greater than or equal to \(\frac{1}{2} \). Since \(mc(\varphi) \geq 3 \), we have that the interpretation of each clause is always 1.
2. First suppose there is an interpretation I on L that satisfies φ, and recall that $\frac{1}{2} \notin N$. We can then define a Boolean interpretation I' that satisfies $B_2(\varphi)$ by letting

$$I'(x) = \begin{cases} 1 & \text{if } I(x) > \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$

For each binary clause $l_1 \oplus l_2$ from φ, at least one of the strict inequalities $I(l_1) > \frac{1}{2}$ or $I(l_2) > \frac{1}{2}$ must hold in order that I satisfies the clause. So, we can assume, without loss of generality, that $I(l_1) > \frac{1}{2}$. If l_1 is a positive literal (equal to a variable x_1), then by definition $I'(x_1) = 1$, and so, $I(x_1 \lor l_2) = 1$. Otherwise, by definition, $I'(x_1) = 0$. So $I'(-x_1) = 1$, and thus $I'(-x_1 \lor l_2) = 1$.

To prove the other direction, let $|N| = 2s + 2$ for some $s \geq 1$, and suppose I is an interpretation on $\{0, 1\}$ that satisfies $B_2(\varphi)$. Then, let I' be the interpretation in L defined by

$$I'(x) = \begin{cases} \frac{s+1}{2s+1} & \text{if } I(x) = 1 \\ 1 - \frac{s+1}{2s+1} & \text{otherwise} \end{cases}$$

As it was proven in 1, this interpretation satisfies all the clauses of length at least 3, so we just need to check that the binary clauses from φ are also satisfied. Let $l_1 \oplus l_2$ be a binary clause of φ. Then, $l_1 \lor l_2$ is a clause from $B_2(\varphi)$, and thus, $I(l_1 \lor l_2) = 1$. Without loss of generality, assume that $I(l_1) = 1$. If it is a positive literal ($l_1 = x_1$), then $I'(x_1) = \frac{s+1}{2s+1}$ and $I'(l_2) \geq 1 - \frac{s+1}{2s+1}$, so $I'(x_1 \lor l_2) \geq \frac{s+1}{2s+1} + 1 - \frac{s+1}{2s+1} = 1$. Otherwise, $I(-x_1) = 1$ implies that $I(x_1) = 0$, and thus, $I'(x_1) = 1 - \frac{s+1}{2s+1}$. Then again, $I'(-x_1 \lor l_2) \geq 1 - (1 - \frac{s+1}{2s+1}) + 1 - \frac{s+1}{2s+1} = 1$.

3. UP preserves the satisfiability when applied to a simple Ł-clausal form φ. If UP(φ) contains the empty clause, then φ is unsatisfiable. If UP(φ) is the empty formula, then φ is satisfiable. In the rest of cases, since UP(φ) contains no unit clauses, the satisfiability of UP(φ) can be decided using either case 1 or case 2 of this lemma.

Lemma 6. The satisfiability of any simple Ł-clausal form is decidable in linear time.

Proof. Case 1 of Lemma 5 can be clearly solved in linear time because we only have to check whether the cardinality of the truth value set is either odd or even. In the latter case, we also have to check whether all the clauses contain at least three literals, and this can be achieved by traversing once the clausal form.

Case 2 of Lemma 5 can be also solved in linear time. Checking whether the cardinality of the truth value set is even, and identifying the binary clauses in the simple Ł-clausal form can be easily done in linear time. In addition, there are algorithms for solving the resulting Boolean 2-SAT problem in linear time [4].

Case 3 of Lemma 5 can be solved using the same algorithms that are applied for Boolean unit propagation, which have linear-time complexity [15].

To overcome the limitations of simple Ł-clausal forms explained above, we now define a new family of test instances, called Łukasiewicz clausal forms (Ł-clausal forms). These instances have a higher expressive power, and are interesting from a practical point of view because they exhibit an easy-hard-easy pattern and a phase transition phenomenon similar to the ones found in other combinatorial problems like Boolean 3-SAT [12]. So, one can generate both satisfiable and unsatisfiable instances of varying difficulty by adjusting the clause-to-variable ratio.

Definition 7. Let $\{x_1, \ldots, x_m\}$ be a set of propositional variables. A literal is a propositional variable x_i or a negated propositional variable $\neg x_i$. A term is a literal or an expression of the form $\neg(l_1 \oplus \ldots \oplus l_n)$, where l_1, \ldots, l_n are literals. A Łukasiewicz clause (Ł-clause) is disjunction of terms. A Łukasiewicz clausal form (Ł-clausal form) is a conjunction of Ł-clauses.

Definition 8. The SAT problem for an Ł-clausal form consists in finding an interpretation that satisfies all its Ł-clauses. If each Ł-clause contains exactly k variable occurrences, it is called the k-SAT problem for Ł-clausal forms.

For example, the Ł-clausal form $\neg x_2 \land (x_1 \oplus x_3) \land (\neg(x_1 \oplus x_2) \lor \neg x_3)$ is satisfied by the interpretation that assigns the value 0 to x_1 and x_2, and assigns the value 1 to x_3.

Lemma 9. The 3-SAT problem for Ł-clausal forms is NP-complete.

Proof. We will show that (i) this problem belongs to NP and (ii) the Boolean 3-SAT problem is polynomially reducible to the 3-SAT problem for Ł-clausal forms.

The 3-SAT problem for Ł-clausal forms clearly belongs to NP: given a satisfiable Ł-clausal form, a nondeterministic algorithm can guess a satisfying interpretation and check that it satisfies the formula in polynomial time.

Let $\{l_i^0 \mid 1 \leq i \leq n, 1 \leq j \leq 3\}$ be a set of literals over the set of Boolean variables $\{x_1, \ldots, x_m\}$, and let $\phi = \bigwedge_{i=1}^{n}(l_i^0 \lor l_i^1 \lor l_i^2)$ be a Boolean 3-SAT instance. We derive an Ł-clausal form 3-SAT instance ϕ' from ϕ as follows:

1. For every Boolean variable x_k, $1 \leq k \leq m$, we add the Ł-clause $\neg(x_k \oplus x_k) \oplus x_k$ in ϕ'.
2. For every clause \(l_1^j \lor l_2^j \lor l_3^j \) in \(\phi \), we add the Ł-clause \(l_1^j \oplus l_2^j \oplus l_3^j \) in \(\phi' \).

So, \(\phi' = \bigwedge_{i=1}^{m}(\neg(x_k \oplus x_j) \oplus x_k) \land \bigwedge_{i=1}^{n}(l_1^j \oplus l_2^j \oplus l_3^j) \). This reduction can obviously be performed in polynomial time, and the size of \(\phi' \) is linear in the size of \(\phi \).

We now prove that \(\phi' \) is satisfiable if \(\phi \) is satisfiable. Assume that \(\phi' \) is satisfiable. Then, every variable \(x_k \) must be evaluated to either 0 or 1. This is so because \(\neg(x_k \oplus x_j) \oplus x_k \) evaluates to 1 iff \(x_k \) evaluates to either 0 or 1. Since the semantics of Łukasiewicz strong disjunction when restricted to 0 and 1 is identical to the semantics of Boolean disjunction, any model of \(\phi' \) is a model of \(\phi \). Therefore, \(\phi \) is satisfiable.

Assume that \(\phi \) is satisfiable. Any Boolean model of \(\phi \) can be transformed to a many-valued model by assigning 0 to the variables that evaluate to false, and 1 to the variables that evaluate to true. If \(x_k \) evaluates to either 0 or 1, \(\neg(x_k \oplus x_j) \oplus x_k \) evaluates to 1, and \(l_1^j \oplus l_2^j \oplus l_3^j \) also evaluates to 1 because we assumed that every Boolean clause \(l_1^j \lor l_2^j \lor l_3^j \) is satisfiable. Therefore, \(\phi' \) is satisfiable.

These instances are interesting because the 3-SAT problem for Ł-clausal forms is NP-complete while it is decidable in linear time if negations are not allowed above the literal level; i.e., the 3-SAT problem for simple Ł-clausal forms. Moreover, Ł-clausal forms are genuinely multiple-valued in the sense that there exist Ł-clausal forms that are satisfiable under Łukasiewicz semantics but are not satisfiable under Boolean semantics. For example, \((x_1 \oplus x_2) \land (\neg x_1 \oplus x_2) \land (x_1 \oplus \neg x_2) \land (\neg x_1 \oplus \neg x_2)\) is satisfied in Łukasiewicz logic if \(x_1 \) and \(x_2 \) evaluate to \(\frac{1}{2} \), but \((x_1 \lor x_2) \land (\neg x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_2)\) is unsatisfiable in the Boolean case.

We now prove that the 2-SAT problem for Ł-clausal forms can be solved in linear time.

Lemma 10. The 2-SAT problem for Ł-clausal forms is decidable in linear time.

Proof. The only Ł-clauses of 2-SAT instances that are different from the clauses in simple Ł-clausal forms are of the form \(\neg(l_i \oplus l_j) \), where \(l_i, l_j \) are literals. However, clauses of the form \(\neg(l_i \oplus l_j) \) can be replaced with \(\neg l_i \land \neg l_j \) because \(\neg(l_i \oplus l_j) \) is satisfiable if \(l_i \) and \(l_j \) evaluate both to 0. Hence, replacing all the Ł-clauses \(\neg(l_i \oplus l_j) \) with \(\neg l_i \land \neg l_j \) produces a simple Ł-clausal form, whose satisfiability can be decided in linear time according to Lemma 6.

4 Experimental Results

We first describe the generator of Ł-clausal forms that we have developed, and then report on the empirical investigations conducted to identify challenging benchmarks.
are unsatisfiable. Moreover, we observe that the difficulty increases with the cardinality of the truth value set, especially in the hardest instances.

It is worth noting that in [6] the threshold point for Boolean random 3-SAT was accurately identified to correspond to a clause-to-variable ratio equal to 4.24. Interestingly, in our case it corresponds to a ratio of approximately 1.9, regardless of the cardinality of the truth value set.

Figure 2 shows the results for the infinitely-valued case. We observe a phase transition with a threshold point again of approximately 1.9, and a similar easy-hard-easy pattern.

Finally, it is worth mentioning that we have identified the phase transition phenomenon and easy-hard-easy pattern for Ł-clausal form 3-SAT instances with other SMT solvers, as well as with a MIP solver in the infinitely-valued case. Hence, our results are independent from the encoding and the solver used, and provide a challenging benchmark.

5 Concluding Remarks

We have defined a new class of clausal forms for Łukasiewicz logics, studied their complexity, and developed a generator that produces both satisfiable and unsatisfiable instances of varying difficulty. As future work, we plan to analytically derive tight lower and upper bounds of the threshold point, and find suitable encodings of combinatorial problems using the formalism of Ł-clausal forms.

Finally, we would like to mention that after the submission of our work we knew that recently, and independently of our work, Borgwardt et al. [5] proved that the satisfiability problem of a subclass of finitely-valued Łukasiewicz formulas is NP-complete when the cardinality of the truth value set is greater than three.

References