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Abstract In this paper, we study the Moore–Gibson–Thompson equation in R
N ,

which is a third order in time equation that arises in viscous thermally relaxing fluids
and also in viscoelastic materials (then under the name of standard linear viscoelastic
model). First, we use some Lyapunov functionals in the Fourier space to show that,
under certain assumptions on some parameters in the equation, a norm related to the
solution decays with a rate (1+ t)−N/4. Since the decay of the previous norm does not
give the decay rate of the solution itself then, in the second part of the paper, we show
an explicit representation of the solution in the frequency domain by analyzing the
eigenvalues of the Fourier image of the solution and writing the solution accordingly.
We use this eigenvalues expansion method to give the decay rate of the solution (and
also of its derivatives), which results in (1+ t)1−N/4 for N = 1, 2 and (1+ t)1/2−N/4

when N ≥ 3.
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1 Introduction, Derivation of the Model and Main Results

Acoustic is an active field of research which is concerned with the generation and
space-time evolution of small mechanical perturbations in fluid (sound waves) or in
solid (elastic waves). One of the important equations in nonlinear acoustics is the
Kuznetsov equation:

utt − c2�u − b�ut = ∂

∂t

(
1

c2
B

2A
(ut )

2 + |∇u|2
)

, (1.1)

where u represents the acoustic velocity potential, and b, c, and B/A are the diffusivity
and speed of sound, and the nonlinearity parameter, respectively. The derivation of
Eq. (1.1) can be obtained from the general equations of fluid mechanics (see details in
[4,11,22] or [13], and the references therein, for instance) when assuming the Fourier
law for the heat conduction, that is q = −K∇θ , where K is the thermal conductivity
and θ is the absolute temperature. It is known that this assumption leads to the paradox
of infinite heat propagation speed and also fails when q increases or∇θ decreases (see
[10]). To overcome this drawback, a number of modifications of the basic assumption
on the relation between the heat flux and the temperature have been made. One of
these laws is the Maxwell–Cattaneo law, that assumes the following relation between
heat flux and temperature,

τqt + q = −K∇θ,

where τ is the relaxation time of the heat flux (usually small with respect to the other
parameters). By considering Cattaneo’s law instead of Fourier’s law and combining it
with the equations of fluid mechanics, we get the following equation instead of (1.1),
known as the Jordan–Moore–Gibson–Thompson equation (see [10]):

τuttt + utt − c2�u − b�ut = ∂

∂t

(
1

c2
B

2A
(ut )

2 + |∇u|2
)

, (1.2)

where b = δ + τc2, with δ being the diffusivity of sound.
In the present paper we consider the linearized version of Eq. (1.2), known as the

Moore–Gibson–Thompson equation in the acoustics theory:

τuttt + utt − c2�u − c2β�ut = 0, (1.3)

with β = b/c2. This linear equation also arises in viscous thermally relaxing fluids
and has applications in medical and industrial use of high intensity ultrasound such as
lithotripsy, thermotherapy or ultrasound cleaning (see [15]).

This equation also appears in viscoelasticity theory under the name of standard
linear model of vicoelasticity (sometimes also called Kelvin or Zener’s model) to
explain the behaviour of certain viscoelastic materials (that is, that exhibit both a
viscous fluid and an elastic solid response) such as, for instance, fluids with complex
microestructure (see [14]). In this context, u represents the linear deformation of a
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viscoelastic solidwith an approach that is considered to bemore realistic than the usual
Kelvin–Voigt model. Actually, this model seems to be the simplest one that reflects
both creeping and stress relaxation effects in viscoelastic materials (see [6] or [21] for
more details). The derivation of Eq. (1.3) in R in the context of viscoelasticity theory
can be obtained using the rheological point of view, a common way of approaching
viscoelastic systems that uses springs and dashpots (connected in some particular way)
to represent the elastic and viscous components of the materials, respectively. In some
references (see, for instance, [1,7] or [6]) this equation in the one dimensional case is
obtained when connecting in series a linear spring with a Kelvin–Voigt system, that
is, another linear spring connected in parallel with a dashpot. However, there are few
references in which the standard linear model is described as a linear spring connected
in parallel with a Maxwell model, that is, a spring and a dashpot connected in series
(see for instance [17], where this model is also called the 3-parameter model). In both
descriptions of the standard viscoelastic model, the corresponding equation would be

τuttt + utt − E

ρ
(uxx + βutxx ) = 0,

where τ represents the stress relaxation time under constant strain, β represents the
strain relaxation time under constant stress, E stands for the relaxed elastic modu-
lus (these parameters, in turn, depend on the elastic and viscous coefficients of the
material), and ρ represents the longitudinal density of the material. This equation is
obtained thinking our material as a sequence of increasingly-many series-coupled sys-
tems of the type described above as single components (see [5, Chap. 6] or [19, Sect.
2 ] for a similar deduction on different models).

In [1,7] or [20] it is assumed that 0 < τ < β (dissipative system), with τ, β

being small constants. It can be seen that in both descriptions of the standard linear
viscoelastic model this is a natural assumption.

The initial boundary value problem associated to (1.3) has been studied recently
by many authors in bounded domains. In [11] (see also [12]), the authors considered
the linearized equation

τuttt + αutt + c2Au + bAut = 0 (1.4)

whereA is a positive self-adjoint operator, and showed that by neglecting diffusivity of
the sound coefficient (b = 0) there arises a lack of existence of a semigroup associated
with the linear dynamics. On the other hand, they showed that when the diffusivity of
the sound is strictly positive (b > 0), the linear dynamics are described by a strongly
continuous semigroup,which is exponentially stable provided the dissipative condition
γ = α − τc2/b > 0 is fulfilled (which is the same as the condition 0 < τ < β in
the viscoelastic approach). While if γ = 0 the energy is conserved (the same type of
results are obtained in [1] or [7] using energy methods, or in [16] using the analysis of
the spectrum of the operator). The exponential decay rate results in [16] are completed
in [20], where the obtention of an explicit scalar product where the operator is normal
allows the authors to obtain the optimal exponential decay rate of the solutions. Finally,
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in [3], the authors show the caotic behaviour of the system when γ < 0, as we have
mentioned above.

Observe that in this third order in time equation, the strong damping term bAut is
responsible for the well-posedness of the problem, while in the wave equation with
strong damping (τ = 0) the strong damping term is responsible for the analiticity of
the semigroup.

We also mention the recent paper [14] where the authors consider (1.4) with a
memory damping term and show an exponential decay of the energy provided that the
kernel is exponentially decaying. This result is generalized in [15], where it is shown
that the memory kernel decay determines the solution decay.

To the best of our knowledge, these equations have not been studied yet in an
unbounded domain. So, the goal of this paper is to show the well-posedness and
investigate the decay rate of the solutions of the Moore–Gibson–Thompson equation
in an unbounded domain. Namely, we consider the equation

τuttt + utt − c2�u − c2β�ut = 0 in RN , t > 0, (1.5)

with the following initial data

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , utt (x, 0) = u2 (x) . (1.6)

In order to state and prove our results, let us first and without loss of generality, take
c = 1. In addition, we assume that 0 < τ < β, which corresponds to the dissipative
case. As wewill see in Sect. 2, the above problem is well-posed in a convenient Hilbert
space.

The two main results we obtain for the decay rate of this equation can be seen in
Theorems 3.6 and 5.1 (and 5.3) below. First, in Sect. 3 and using the energy method
in the Fourier space, we show that, if 0 < τ < β and under the appropriate conditions
on the initial condition, the L2-norm of the components of V and of its higher-order
derivatives ∇ j V , with V = (ut + τutt ,∇(u + τut ),∇ut ), decay as

‖∇ j V (t)‖L2(RN ) ≤ C(1 + t)−N/4− j/2‖V0‖L1(RN ) + Ce−ct‖∇ j V0‖L2(RN ), (1.7)

for some C, c > 0 (see Theorem 3.6).
The decay rate in (1.7) is a direct consequence of the estimate of the Fourier image

V̂ (x, t):

|V̂ (ξ, t)|2 ≤ Ce−cρ(ξ)t |V̂ (ξ, 0)|2, ρ(ξ) = |ξ |2
1 + |ξ |2

which we derive using the Lyapunov functional method (see Proposition 3.1). This
method is a very powerful tool in proving the decay rate of this norm (see [8,9]).
But, unfortunately, it is obvious that the estimate (1.7) does not give us any infor-
mation about the decay of the L2-norm of the solution u(x, t) itself. It only gives us
the decay rate of the L2-norm of V which eventually follows the decay rate of the
slowest component of the vector V . So, to overcome this limitation of the Lyapunov
functional method, we use the eigenvalues expansion method, which is based essen-
tially on the behavior of the eigenvalues of the equation in the Fourier space. In Sect.
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4 we give a complete description of the solutions of the characteristic equation of
the corresponding operator and use it to divide the frequency domain into three main
parts (low frequency, middle frequency and high frequency regions) and estimate the
Fourier image of the solution in each region. In Sect. 5 and using this method, we are
able to prove our second main result, which is the following decay rate of the solution
of (1.5)–(1.6) when 0 < τ < β with initial data in the corresponding domain and
L1(RN ) ∩ Hs(RN ), s ≥ 1 (see Theorem 5.1):

∥∥∥∇ j u (t)
∥∥∥
L2(RN )

≤ C(‖u0‖L1(RN ) + ‖u1‖L1(RN ) + ‖u2‖L1(RN ))(1 + t)1−N/4− j/2

+C(‖∇ j u0‖L2(RN ) + ‖∇ j u1‖L2(RN ) + ‖∇ j u2‖L2(RN ))e
−ct

(1.8)

(for certain c,C > 0 and 0 ≤ j ≤ s) and even better estimates if N + j ≥ 3 (see
Theorem 5.3):

∥∥∥∇ j u (t)
∥∥∥
L2(RN )

≤ C(‖u0‖L1(RN )+‖u1‖L1(RN ) + ‖u2‖L1(RN ))(1 + t)−(N−2)/4− j/2

+C(‖∇ j u0‖L2(RN ) + ‖∇ j u1‖L2(RN ) + ‖∇ j u2‖L2(RN ))e
−ct .

(1.9)

For initial data also in the weighted space L1,1(RN ) ∩ Hs(RN ), s ≥ 1, the above
estimates will be improved (see Theorem 5.5 for more details).

To summarize, the remaining part of this paper is organized as follows. In Sect. 2
the functional setting and well-posedness of the problem is given. In Sect. 3 we use
the energy method in the Fourier space to build an appropriate Lyapunov functional,
that is used to derive the decay rate of the norm explained above. Section 4 is devoted
to the eigenvalues expansion method, that is used in Sect. 5 to derive the decay rate of
the solution and its spacial derivatives.

2 Functional Setting and Well-Posedness of the Problem

We first show the well-posedness of problem (1.5)–(1.6) (as we said, with c = 1) in
the dissipative case 0 < τ < β. As we have already said, the well-posedness of this
problem in a bounded domain has been investigated by several authors. Among them,
the work of [1], where the existence and uniqueness of solutions for the standard linear
viscoelastic model with a thermal effect in a bounded domain is shown bymeans of the
Lummer–Phillips theorem (see [18] or [2]). That means they show this well-posedness
for a model consisting in the above equation coupled to a heat equation. We are going
to see that their approach can be adapted to our case (infinite domain and no thermal
effect) to prove the well-posedness of the Moore–Gibson–Thompson equation inRN .

First, we write problem (1.5)–(1.6) as a first-order evolution equation. By taking
v = ut and w = utt , this problem can be reduced to
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{ d

dt
U (t) = AU (t), t ∈ [0,+∞)

U (0) = U0

(2.1)

where U (t) = (u, v, w)T , U0 = (u0, u1, u2)T and A : D(A) ⊂ H −→ H is the
following linear operator

A
⎛
⎝ u

v

w

⎞
⎠ =

⎛
⎝ v

w
1
τ
�(u + βv) − 1

τ
w

⎞
⎠

(we recall that we have taken c = 1 in (1.5)).
Inspired by [1], we introduce the energy spaceH = H1(RN )×H1(RN )×L2(RN )

with the following inner product

〈(u, v, w), (u1, v1, w1)〉H
= τ(β − τ)

∫
RN

∇v · ∇v1 dx +
∫
RN

∇(u + τv) · ∇(u1 + τv1) dx

+
∫
RN

(v + τw) · (v1 + τw1) dx +
∫
RN

(u + τv) · (u1 + τv1) dx

+
∫
RN

v · v1 dx

and the corresponding norm

‖(u, v, w)‖2H = τ(β − τ)‖∇v‖2
L2(RN )

+ ‖∇(u + τv)‖2
L2(RN )

+‖v + τw‖2
L2(RN )

+ ‖u + τv‖2
L2(RN )

+ ‖v‖2
L2(RN )

.
(2.2)

Remark 2.1 Observe that this new norm is slightly different from the norm introduced
in [1] (appart from the fact that the thermal term is not present here). The extra terms
that now appear in (2.2) are necessary so that the new norm (2.2) is equivalent to the
usual one inH. This is a difference with the bounded domain case seen in [1], where
the norm they introduce and the usual one in H = H1

0 (�) × H1
0 (�) × L2(�) for

� ⊂ R
N bounded are equivalent because of the Poincaré inequality, no longer valid

in RN .

We consider (2.1) in the Hilbert space H, with the following domain

D(A) =
{
(u, v, w) ∈ H;w ∈ H1(RN ), u + βv ∈ H2(RN )

}
. (2.3)

Theorem 2.2 Under the dissipative condition 0 < τ < β, the operatorA generates a
C0-semigroup onH. In particular, for any U0 ∈ D(A), there exists a unique function
U ∈ C1([0,+∞);H) ∩ C([0,+∞);D(A)) satisfying (2.1).
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Proof Instead of considering our problem (2.1), we now consider the perturbed prob-
lem ⎧⎨

⎩
d

dt
U (t) = ABU (t), t ∈ [0,+∞)

U (0) = U0

(2.4)

where

AB

⎛
⎝ u

v

w

⎞
⎠ = (A + B)

⎛
⎝ u

v

w

⎞
⎠ =

⎛
⎝ v

w
1
τ
�(u + βv) − 1

τ
w − 1

τ
u − v − 1

τ 2
v

⎞
⎠ .

We are going to prove that AB generates a C0-semigroup of contractions on H. As
AB is a bounded perturbation of A, standard semigroup theory allows us to say that
A generates a C0-semigroup on H (see, for instance, [18, Theorem 1.1 in Chap. 3]).
This approach may recall the one used in [11] for the bounded domain case, although
the energy used here is not the same, and the fact that we are considering a bounded
perturbation of the problem and not a change in the variables as in [11].

The fact that AB generates a C0-semigroup of contractions on H will be proved
using the Lummer–Phillips theorem (see, for instance, [18, Theorem 4.3 in Chap. 1])
and adapting the argument given in [1] to this perturbed problem. The first thing to
notice is that, as we are in a Hilbert space, the operator is densely defined. Hence, we
only need to prove that the operator is dissipative and that there exists some λ > 0
such that λI d − AB is surjective.

Following the same steps as in [1, Proof of Proposition 2.1] and using our new inner
product, we can see that, in our case,

Re〈ABU,U 〉H = −(β − τ)

∫
RN

|∇v|2 dx − 1

τ

∫
RN

|v|2 dx ≤ 0

since 0 < τ < β. Hence, the operator AB is dissipative.
Following now [1, Proof of Proposition 2.2], we can see that λI d−AB is surjective

for any λ > 0 in our case. Indeed, we only have to observe that the conditions for the
bilinear and linear forms so that we can apply the Lax-Milgram theorem are satisfied,
but let us include a brief summary of the details for a better comprehension of the
argument. We consider a given F = ( f, g, h) ∈ H. We want to see that there exists a
unique U = (u, v, w) ∈ D(A) such that (λI d − AB)U = F , that is

λu − v = f ∈ H1(RN )

λv − w = g ∈ H1(RN )

λw − 1

τ
�(u + βv) + 1

τ
w + 1

τ
u + v + 1

τ 2
v = h ∈ L2(RN ). (2.5)

By taking v = λu − f , w = λv − g and replacing it into (2.5), we arrive at the
following equation

123



Appl Math Optim

(
λ3τ + λ2 + λ

τ 2 + 1

τ
+ 1

)
u − (1 + λβ) �u =

(
λ2τ + λ + τ 2 + 1

τ

)
f

−β� f + (λτ + 1) g + τh.

(2.6)

To solve it, we consider its weak version given by the bilinear formM : H1(RN )×
H1(RN ) −→ R, and the linear one K : H1(RN ) −→ R, given by

M(u, ϕ) =
(

λ3τ + λ2 + λ
τ 2 + 1

τ
+ 1

)∫
RN

uϕ dx + (1 + βλ)

∫
RN

∇u · ∇ϕ dx

and

K(ϕ) =
(

λ2τ + λ + τ 2 + 1

τ

)∫
RN

f ϕ dx

+β

∫
RN

∇ f · ∇ϕ dx + (λτ + 1)
∫
RN

gϕ dx + τ

∫
RN

hϕ dx,

respectively. We can see that M is coercive for any λ > 0 as:

M(u, u) ≥ min

{
λ3τ + λ2 + λ

τ 2 + 1

τ
+ 1, 1 + βλ

}
· ‖u‖2H1(RN )

.

And also that it is bounded by using the Hölder inequality, as:

M(u, ϕ) ≤
∣∣∣∣λ3τ + λ2 + λ

τ 2 + 1

τ
+ 1

∣∣∣∣ · ‖u‖L2(RN ) · ‖ϕ‖L2(RN )

+ |1 + βλ| · ‖∇u‖L2(RN ) · ‖∇ϕ‖L2(RN )

≤ C‖u‖H1(RN ) · ‖ϕ‖H1(RN )

for some C > 0. Also, as f, g ∈ H1(RN ), h ∈ L2(RN ), and λ > 0 we can see that

K(ϕ) ≤ C
(‖ϕ‖L2(RN ) + ‖∇ϕ‖L2(RN )

) = C‖ϕ‖H1(RN )

for someC > 0. That means the Lax-Milgram theorem applies and, hence, there exists
a unique u ∈ H1(RN ) such that

M(u, ϕ) = K(ϕ) ∀ϕ ∈ H1(RN ).

Following the same arguments as in [1], we can see that this mild solution is, indeed,
a strong solution of (2.6) and, hence, say that the operator λI d − AB is maximal in
H.

Finally, the application of the Lummer–Phillips theorem concludes that AB is the
generator of a C0-semigroup of contractions in H. As we said, as A is a bounded
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perturbation ofAB , we therefore obtain thatA is the generator of a C0-semigroup on
H. The regularity of the solution is a consequence of this fact (see [2] or [18]). ��

Actually, as problem (2.1) is linear, it can be seen that the solution obtained in the
previous theorem is more regular than just C1([0,+∞);H) ∩ C([0,+∞);D(A)).
Following [2, Chap. 7.3], we proceed to define for any integer k ≥ 2, by induction,
the space

D(Ak) :=
{
U ∈ D(Ak−1);AU ∈ D(Ak−1)

}
, (2.7)

which is a Hilbert space, with the inner product:

〈U, V 〉 =
k∑
j=0

〈A jU,A j V 〉.

For instance, it is easy to see that for our domain D(A) given in (2.3) we have:

D(A2) =
{
(u, v, w) ∈ H1(RN ) × H1(RN ) × H1(RN ); u

+βv ∈ H3(RN ), v + βw ∈ H2(RN )
}

or

D(A3) =
{
(u, v, w) ∈ H1(RN ) × H1(RN ) × H1(RN );
u + βv, v + βw ∈ H3(RN ), (τ − β)w + β�(u + βv) ∈ H2(RN )

}
.

The gain of regularity in these domains is not in u, v or w, but in some specific linear
combinations of the previous components.

Corollary 2.3 Under the dissipative condition 0 < τ < β and for any U0 ∈ D(Ak)

for some k ≥ 2, the solution U of problem (2.1) obtained in Theorem 2.2 satisfies
U ∈ Ck− j ([0,+∞);D(A j )) for all j = 0, 1, . . . , k.

Proof As the problem is linear, this result follows from Theorem 2.2 (see [2, Theorem
7.5 in Sect. 7.3]). ��

3 Energy Method in the Fourier Space

In this section, we apply the energy method in the Fourier space to show the decay rate
of the L2-norm of V = (ut + τutt ,∇(u + τut ),∇ut ), where u(x, t) is the solution
of (1.5)–(1.6).

First, we can write the problem in the Fourier space taking the Fourier transform
of Eq. (1.5) and the initial data (1.6). We then obtain the following ODE initial value
problem:

τ ût t t + ût t + |ξ |2û + β|ξ |2ût = 0 (3.1)
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and
û (ξ, 0) = û0 (ξ) , ût (ξ, 0) = û1 (ξ) , ût t (ξ, 0) = û2 (ξ) (3.2)

with ξ ∈ R
N . As in (2.1), after introducing the new variables

v̂ = ût and ŵ = ût t ,

the previous ODE can be rewritten as the following first order system

⎧⎪⎪⎨
⎪⎪⎩

ût = v̂,

v̂t = ŵ,

ŵt = −|ξ |2
τ

û − β|ξ |2
τ

v̂ − 1

τ
ŵ.

(3.3)

We can write the previous system in a matrix form as

Ût (ξ, t) = �(ξ)Û (ξ, t), (3.4)

with the initial data
Û0(ξ) = Û (ξ, 0),

where Û (ξ, t) = (û(ξ, t), v̂(ξ, t), ŵ(ξ, t))T and

�(ξ) = L + |ξ |2A =
⎛
⎜⎝
0 1 0
0 0 1

0 0 −1

τ

⎞
⎟⎠ + |ξ |2

⎛
⎜⎝

0 0 0
0 0 0

−1

τ
−β

τ
0

⎞
⎟⎠ . (3.5)

Now we define the vector V = (ut + τutt ,∇(u + τut ),∇ut ). Thus, the pointwise
estimate of the Fourier image of V reads as follows.

Proposition 3.1 Let û be the solution of (3.1)–(3.2). Assume that 0 < τ < β. Then,
the Fourier image of the above vector V satisfies the estimate

|V̂ (ξ, t)|2 ≤ Ce−cρ(ξ)t |V̂ (ξ, 0)|2, (3.6)

for all t ≥ 0 and certain c,C > 0, where

ρ(ξ) = |ξ |2
1 + |ξ |2 . (3.7)

The proof of Proposition 3.1 will be given through some lemmas, where a certain
Lyapunov functional is obtained and used. First, we may rewrite system (3.3) as

⎧⎨
⎩
ût = v̂,

v̂t = ŵ,

τ ŵt = −|ξ |2û − β|ξ |2v̂ − ŵ.

(3.8)
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Lemma 3.2 The energy functional associated to system (3.8) is

Ê(ξ, t) = 1

2

{
|v̂ + τŵ|2 + τ(β − τ)|ξ |2|v̂|2 + |ξ |2|û + τ v̂|2

}
(3.9)

and satisfies, for all t ≥ 0, the identity

d

dt
Ê(ξ, t) = −(β − τ)|ξ |2|v̂|2. (3.10)

Proof Summing up the second and the third equation in (3.8) we get

(v̂ + τŵ)t = −|ξ |2û − β|ξ |2v̂. (3.11)

Multiplying (3.11) by ¯̂v + τ ¯̂w and taking the real parts, we obtain,

1

2

d

dt
|v̂+τŵ|2 = −τ |ξ |2 Re(û ¯̂w)−βτ |ξ |2 Re(v̂ ¯̂w)−|ξ |2 Re(û ¯̂v)−β|ξ |2|v̂|2. (3.12)

Next, multiplying the second equation in (3.8) by τ(β − τ) ¯̂v and taking the real part,
we get

1

2
τ(β − τ)

d

dt
|v̂|2 = τ(β − τ)Re(ŵ ¯̂v). (3.13)

Now, multiplying the second equation in (3.8) by τ and adding the result to the first
equation, we obtain

(û + τ v̂)t = τŵ + v̂. (3.14)

Multiplying (3.14) by ¯̂u + τ ¯̂v and taking the real part, we get

1

2

d

dt
|û + τ v̂|2 = τ Re(ŵ ¯̂u) + τ 2 Re(ŵ ¯̂v) + Re(v̂ ¯̂u) + τ |v̂|2. (3.15)

Now, computing |ξ |2(3.15)+|ξ |2(3.13)+ (3.12), we obtain (3.10), which finishes the
proof of Lemma 3.2. ��

Now, we define the functional F1(ξ, t) as

F1(ξ, t) = Re
{
( ¯̂u + τ ¯̂v)(v̂ + τŵ)

}
. (3.16)

Then, we have the following lemma.

Lemma 3.3 For any ε0 > 0, we have

d

dt
F1(ξ, t) + (1 − ε0)|ξ |2|û + τ v̂|2 ≤ |v̂ + τŵ|2 + C(ε0)|ξ |2|v̂|2. (3.17)
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Proof Multiplying Eq. (3.11) by ¯̂u+τ ¯̂v and Eq. (3.14) by ¯̂v+τ ¯̂w we get, respectively,

(v̂ + τŵ)t ( ¯̂u + τ ¯̂v) = (−|ξ |2û − β|ξ |2v̂)( ¯̂u + τ ¯̂v)

= (−|ξ |2û − β|ξ |2v̂ − τ |ξ |2v̂ + τ |ξ |2v̂)( ¯̂u + τ ¯̂v)

and
(û + τ v̂)t ( ¯̂v + τ ¯̂w) = (τ ŵ + v̂)( ¯̂v + τ ¯̂w).

Summing up the above two equations and taking the real part, we obtain

d

dt
F1(ξ, t) + |ξ |2|û + τ v̂|2 − |v̂ + τŵ|2 = |ξ |2(τ − β)Re(v̂( ¯̂u + τ ¯̂v)).

Applying Young’s inequality for any ε0 > 0, we obtain (3.17). This ends the proof of
Lemma 3.3. ��

Next, we define the functional F2(ξ, t) as

F2(ξ, t) = −τ Re( ¯̂v(v̂ + τŵ)). (3.18)

Lemma 3.4 For any ε1, ε2 > 0, we have

d

dt
F2(ξ, t)+ (1− ε1)|v̂ + τŵ|2 ≤ C(ε1, ε2)(1+|ξ |2)|v̂|2 + ε2|ξ |2|û+ τ v̂|2. (3.19)

Proof Multiplying the second equation in (3.8) by −τ( ¯̂v + τ ¯̂w) and (3.11) by −τ ¯̂v,
we obtain, respectively,

−τ v̂t ( ¯̂v + τ ¯̂w) = −τŵ( ¯̂v + τ ¯̂w)

and
−τ(v̂ + τ ŵ)t ¯̂v = (τ |ξ |2û + βτ |ξ |2v̂) ¯̂v

=
(
τ |ξ |2û + τβ|ξ |2v̂ + τ 2|ξ |2v̂ − τ 2|ξ |2v̂ + (v̂ + τ ŵ) − (v̂ + τ ŵ)

) ¯̂v.

Summing up the above two equations and taking the real parts, we obtain

d

dt
F2(ξ, t)+|v̂+τŵ|2−τ(β−τ)|ξ |2|v̂|2 = τ |ξ |2 Re

{
(û + τ v̂) ¯̂v

}
+Re

{
(v̂ + τŵ) ¯̂v

}
.

Applying Young’s inequality, we obtain the estimate (3.19) for any ε1, ε2 > 0. ��
Proof of Proposition 3.1 We define the Lyapunov functional L(ξ, t) as

L(ξ, t) = γ0 Ê(ξ, t) + |ξ |2
1 + |ξ |2 F1(ξ, t) + γ1

|ξ |2
1 + |ξ |2 F2(ξ, t), (3.20)
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where γ0 and γ1 are positive numbers that will be fixed later on.
Taking the derivative of (3.20) with respect to t and making use of (3.10), (3.17)

and (3.19), we obtain

d

dt
L(ξ, t) +

(
γ1(1 − ε1) − 1

) |ξ |2
1 + |ξ |2 |v̂ + τŵ|2

+
(
(1 − ε0) − γ1ε2

) |ξ |2
1 + |ξ |2 (|ξ |2|û + τ v̂|2)

+
(
γ0(β − τ) − C(ε0) − γ1C(ε1, ε2)

)
|ξ |2|v̂|2 ≤ 0, (3.21)

where we used the fact that |ξ |2/(1 + |ξ |2) ≤ 1. In the above estimate, we can fix
our constants in such a way that the previous coefficients are positive. This can be
achieved as follows: we pick ε0 and ε1 small enough such that ε0 < 1 and ε1 < 1.
After that, we take γ1 large enough such that

γ1 >
1

1 − ε1
.

Once γ1 and ε0 are fixed, we select ε2 small enough such that

ε2 <
1 − ε0

γ1
.

Finally, and recalling that τ < β, we may choose γ0 large enough such that

γ0 >
C(ε0) + γ1C(ε1, ε2)

β − τ
.

Consequently, we deduce that there exists a positive constant γ2 such that for all t ≥ 0,

d

dt
L(ξ, t) + γ2

|ξ |2
1 + |ξ |2 Ê(ξ, t) ≤ 0. (3.22)

On the other hand, it is not difficult to see that from (3.20), (3.9), (3.16) and (3.18)
and for γ0, large enough, that there exists two positive constants γ3 and γ4 such that

γ3 Ê(ξ, t) ≤ L(ξ, t) ≤ γ4 Ê(ξ, t). (3.23)

Combining (3.22) and (3.23), we deduce that there exists a positive constant γ5 such
that for all t ≥ 0,

d

dt
L(ξ, t) + γ5

|ξ |2
1 + |ξ |2 L(ξ, t) ≤ 0. (3.24)

A simple application of Gronwall’s lemma, leads to the estimate (3.6), as L and the
norm of V̂ are equivalent. ��
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In order to prove our first main result, we also need the first inequality of the
following lemma. The rest of it will be used to prove the decay results in the other
sections.

Lemma 3.5 For all t ≥ 0 and for all j ≥ 0, c > 0, the following estimates hold:

∫
|ξ |≤1

|ξ | j e−c|ξ |2t dξ ≤ C(1 + t)−N/2− j/2, for N ≥ 1. (3.25)

Also,

∫
|ξ |≤1

|ξ | j e−c|ξ |2t |cos(t |ξ |)|2 dξ ≤ C(1 + t)−N/2− j/2, for N ≥ 1. (3.26)

Moreover,

∫
|ξ |≤1

|ξ | j e−c|ξ |2t
∣∣∣∣ sin(t |ξ |)

|ξ |
∣∣∣∣
2

dξ ≤ C(1 + t)2−N/2− j/2, for N ≥ 1 (3.27)

and

∫
RN

|ξ | j e−c|ξ |2t
∣∣∣∣ sin(t |ξ |)

|ξ |
∣∣∣∣
2

dξ ≤ Ct−(N−2)/2− j/2, if j + N ≥ 3. (3.28)

Proof First, to prove inequality (3.25) we will first prove that for given c > 0 and
k ≥ 0, we have ∫ 1

0
rke−cr2t dr ≤ C(1 + t)−(k+1)/2, (3.29)

for all t ≥ 0, where C is a positive constant independent of t . To see this, observe first
that for 0 ≤ t ≤ 1, the estimate (3.29) is obvious. On the other hand, for t ≥ 1, we
have

(1 + t) ≤ 2t. (3.30)

Now, by using (3.30) and the change of variables z = cr2t ,

2−(k+1)/2c(k+1)/2(1 + t)(k+1)/2
∫ 1

0
rke−cr2t dr ≤ c(k+1)/2t (k+1)/2

∫ 1

0
rke−cr2t dr

=
∫ 1

0
(cr2t)k/2e−cr2t (ct)1/2dr

= 1

2

∫ ct

0
(z)k/2e−z z−1/2dz

≤ 1

2

∫ ∞

0
z(k+1)/2−1e−zdz

= 1

2
�

(
k + 1

2

)
< ∞,
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where � is the gamma function. This yields (3.29). Applying the change of variables
r = |ξ | and dξ = C |ξ |N−1dr to the left hand side of (3.25) and using (3.29), (3.25)
is immediately obtained.

Second, the estimate (3.26) is straightforward: we may just use the fact that
| cos(t |ξ |)| ≤ 1 and apply (3.25).

Third, to show (3.28) we first see that

| sin(t |ξ |)| ≤ t |ξ |

for all |ξ | ≥ 0. Using this, we have

∫
|ξ |≤1

|ξ | j e−c|ξ |2t
∣∣∣∣ sin(t |ξ |)

ξ

∣∣∣∣
2

dξ ≤
∫

|ξ |≤1
|ξ | j e−c|ξ |2t t2dξ

≤ (1 + t)2
∫

|ξ |<1
|ξ | j e−c|ξ |2t dξ

≤ C(1 + t)2 · (1 + t)−N/2− j/2

= C(1 + t)2−N/2− j/2,

where we have used (3.25). This inequality holds true for all N ≥ 1, in particular for
N = 1, 2. But now, for N ≥ 3, we can improve the above estimate and get (3.28).
Indeed, by taking the change of variable r = |ξ | and dξ = C |ξ |N−1dr , we write

∫
RN

|ξ | j e−c|ξ |2t
∣∣∣∣ sin(t |ξ |)

ξ

∣∣∣∣
2

dξ =≤ C ∈∞
0 r j+N−1e−cr2t

∣∣∣∣ sin(tr)r

∣∣∣∣
2

dr.

Now, we put the new change of variable ω = √
tr and then we get

∫ ∞

0
r j+N−1e−cr2t

∣∣∣∣ sin(tr)r

∣∣∣∣
2

dr

=
∫ ∞

0
(ω/

√
t)

j+N−1
e−cω2

∣∣∣sin(√tω)

∣∣∣2 (t/ω2)(dω/
√
t)

= (
√
t)−( j+N−2)

∫ ∞

0
ω j+N−3e−cω2

∣∣∣sin(√tω)

∣∣∣2 dω

≤ t−
j+N−2

2

∫ ∞

0
ω j+N−3e−cω2

dω.

Now, for j + N − 3 ≥ 0 (which holds for all j ≥ 0 and N ≥ 3 or for all j + N ≥ 3
and N ≥ 1), we have

∫ ∞

0
ω j+N−3e−cz2dz =

�
(

j+N−2
2

)

2c
j+N−2

2

.
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Consequently, we have from above that

∫
RN

|ξ | j e−c|ξ |2t
∣∣∣∣ sin(t |ξ |)

ξ

∣∣∣∣
2

dξ ≤ Ct−(N−2)/2− j/2, if N + j ≥ 3

which is exactly (3.28). ��
We can now proceed to give and prove our first main result, which reads as follows.

Theorem 3.6 Let u be the solution of (1.5)–(1.6), with initial condition U0 =
(u0, u1, u2) ∈ D(As) for s ≥ 1. Assume that 0 < τ < β. Let V = (ut + τutt ,∇(u +
τut ),∇ut ) and assume in addition that V0 ∈ L1(RN ) ∩ Hs(RN ). Then, for all
0 ≤ j ≤ s, we have

‖∇ j V (t)‖L2(RN ) ≤ C(1 + t)−N/4− j/2‖V0‖L1(RN ) + Ce−ct‖∇ j V0‖L2(RN ). (3.31)

Remark 3.7 Observe that we need to explicitly ask for u0, u1, u2 ∈ L1(RN ) ∩
Hs(RN ), because (u0, u1, u2) ∈ D(As), s ≥ 1, does not imply that u0, u1, u2 belong
to any of these two spaces, and we need the L1-norm of V0 and the L2-norm of ∇ j V0.

Proof First, observe that the Fourier image of V satisfies the decay estimate of Propo-
sition 3.1. Now, to show (3.31), we have from (3.7) that

ρ(ξ) ≥
{
c|ξ |2, if |ξ | ≤ 1,
c, if |ξ | ≥ 1.

(3.32)

Applying the Plancherel theorem and using the estimate in (3.6), we obtain

∥∥∥∇ j
x V (t)

∥∥∥2
L2(RN )

=
∫
RN

|ξ |2 j |V̂ (ξ, t) |2dξ

≤ C
∫
RN

|ξ |2 j e−cρ(ξ)t |V̂ (ξ, 0) |2dξ

= C
∫

|ξ |≤1
|ξ |2 j e−cρ(ξ)t |V̂ (ξ, 0) |2dξ

+ C
∫

|ξ |≥1
|ξ |2 j e−cρ(ξ)t |V̂ (ξ, 0) |2dξ

=: I1 + I2. (3.33)

Exploiting (3.32), we infer that

I1 ≤ C‖V̂0‖2L∞(RN )

∫
|ξ |≤1

|ξ |2 j e−c|ξ |2t dξ ≤ C (1 + t)−N/2− j ‖V0‖2L1(RN )
, (3.34)

where we have used the inequality (3.25). In the high-frequency region (|ξ | ≥ 1), we
have

I2 ≤ Ce−ct
∫

|ξ |≥1
|ξ |2 j |V̂ (ξ, 0) |2dξ ≤ Ce−ct‖∇ j V0‖2L2(RN )

.
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Collecting the above two estimates, we obtain (3.31). This finishes the proof of The-
orem 3.6. ��

Remark 3.8 Theorem 3.6 does not give us a bound for the L2-norm of the derivatives
of the solution u itself. In fact, it gives the decay rates of the L2-norms of ut + τutt ,
∇(u + τut ) and ∇ut (and also of the corresponding derivatives). In order to know the
decay rate of the solution u and all its spatial derivatives, we need to use the explicit
form of the solution and the eigenvalues expansion. This will be done in Sect. 5 below,
in which the results of Sect. 4 will be used.

4 Eigenvalues Expansion

In this section, we use the eigenvalues expansion and the explicit form of the Fourier
image of the solution in order to find the decay rates of the solution and its spacial
derivatives.

The characteritic equation associated to (3.4) is

det(L + |ξ |2A − λI ) = τλ3 + λ2 + β|ξ |2λ + |ξ |2 = 0. (4.1)

The solutions λi , i = 1, 2, 3 of the previous equation are the eigenvalues of �(ξ).
We will use either λi (ξ) or λi (|ξ |) to denote them (depending on which of both
notations is more convenient and when no confusion is possible) during the text below.

The following proposition on the description of these eigenvalues is an adaptation
of some of the results of [20, Proposition 4] (some part also in [16]), that we summarize
and adapt here for a better comprehension and to be used later in the present work.

Proposition 4.1 (Description of the eigenvalues, [20] and [16])For each ξ ∈ R
N there

exist three corresponding eigenvalues of �(ξ), that we name λ j (|ξ |), j = 1, 2, 3, the
three solutions of the corresponding characteristic equation (4.1).

We define the following numbers m1,m2, which are the zeroes of the Cardano
discriminant associated to the characteristic equation (4.1):

m1 = τ
−C1 − √

C2

8β3 , m2 = τ
−C1 + √

C2

8β3 (4.2)

with

C1 = 27 − 18

(
β

τ

)
−

(
β

τ

)2

, C2 = C2
1 − 64

(
β

τ

)3

. (4.3)

Under the dissipativeness condition 0 < τ < β, the eigenvalues of �(ξ) satisfy the
following:
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Fig. 1 Plot of λ(|ξ |)when 0 < τ
β

< 1
9 (case (1c) of Proposition 4.1). Top: the three sequences of solutions

of the characteristic equation. Bottom (from left to right): separated plot of each of these sequences λ1(|ξ |),
λ2(|ξ |) andλ3(|ξ |). The large dot and diamond correspond to the double eigenvaluesλ1(

√
m2) = λ2(

√
m2)

and λ2(
√
m1) = λ3(

√
m1) respectively. The dashed arrows represent how each family of solutions is

increasing as a function of |ξ |. The dashed vertical line is Re(λ) = − 1
2

(
1
τ − 1

β

)
, which is the limit of the

nonreal sequences as |ξ | → ∞, and the cross represents the point (− 1
β

, 0), which is the limit of the real
one as |ξ | → ∞ (see [16,20] for more details)

1. (a) λ1(|ξ |) = − 1
τ
and λ2,3(|ξ |) = 0 when |ξ | = 0.

(b) If 19 < τ
β

<1,λ1(|ξ |) ∈ R and λ2(|ξ |) = λ3(|ξ |) ∈ C\R for all values of |ξ | >

0.
(c) If 0 < τ

β
< 1

9 , the type of eigenvalue depends on the value of |ξ | (see Fig. 1).
More concretely:
(i) λ3(|ξ |) ∈ R and λ1(|ξ |) = λ2(|ξ |) ∈ C\R for 0 < |ξ | <

√
m1.

(ii) λ1,2,3(|ξ |) ∈ R for
√
m1 ≤ |ξ | ≤ √

m2. Moreover, in the case that |ξ | =√
m1 or |ξ | = √

m2, two of these real roots are equal.
(iii) λ1(|ξ |) ∈ R and λ2(ξ) = λ3(ξ) ∈ C\R for |ξ | >

√
m2.

(d) If τ
β

= 1
9 , we have m1 = m2 and

(i) λ3(|ξ |) ∈ R and λ1(|ξ |) = λ2(|ξ |) ∈ C\R for 0 < |ξ | <
√
m1.

(ii) λ1,2,3(|ξ |) = − 3
β

∈ R for |ξ | = √
m1 = √

m2 (triple root case).

(iii) λ1(|ξ |) ∈ R and λ2(|ξ |) = λ3(|ξ |) ∈ C\R for |ξ | >
√
m2.

2. (a) If λ(|ξ |), |ξ | �= 0, is a real eigenvalue of �(ξ), then

− 1

τ
< λ(|ξ |) < − 1

β
. (4.4)

If λ(|ξ |) is nonreal, then

− 1

2

(
1

τ
− 1

β

)
< Re(λ(|ξ |)) < 0. (4.5)
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(b) If |ξ1| < |ξ2| and such that λ2(|ξ1|), λ2(|ξ2|) ∈ C\R, then Re(λ2(|ξ1|)) >

Re(λ2(|ξ2|)).
Remark 4.2 Observe that with the previous labelling of the eigenvalues in part 1 of
Proposition 4.1, each λi (|ξ |), i = 1, 2, 3, is a continuous function in ξ . However,
during the rest of the paper and for simplicity in the notation we may call λ1 the real
eigenvalue and λ2,3 the complex conjugate ones for all ξ in some proofs (it will be
mentioned when this is done).

In the description of the eigenvalues, we also need to prove the following lemma.

Lemma 4.3 The characteristic equation associated to (3.1) has no pure imaginary
solution if 0 < τ < β (dissipative case).

Proof We consider (4.1), the characteristic equation associated to (3.1). Assume that
there exists an eigenvalue λ0(|ξ |) = iα as a solution of (4.1) with α ∈ R. Plugging
λ0 into (4.1) and splitting the real and imaginary parts, we obtain

−τα3 + β|ξ |2α = 0 and |ξ |2 − α2 = 0.

From the first equation, we have two possibilites: α = 0 or α = ±
√

β
τ
|ξ |. In the

first case and using now the second equation, the only possibility is that α = |ξ | = 0,
which actually means that λ0 = 0 is a (double) real eigenvalue when |ξ | = 0. The
second one would be fulfilled only if |ξ | = 0 or if β = τ . If |ξ | = 0, we would again
obtain λ0 = 0 as a (double) real eigenvalue. The case β = τ will not be considered
since we assumed that 0 < τ < β. Hence, the characteristic equation associated to
(3.1) has no pure imaginary solutions in the dissipative case. ��

In order to give the decay rate of the solution in the next section, we now proceed
to give asymptotic approximations of the eigenvalues of �(ξ) when |ξ | → 0 and
|ξ | → ∞. For this purpose, it will be more convenient to apply the change of variables
ζ = i |ξ | in the characteristic equation (4.1), that now becomes:

det(L − ζ 2A − λI ) = τλ3 + λ2 − βζ 2λ − ζ 2 = 0. (4.6)

Recall that λ j (ζ ), j = 1, 2, 3, are the roots of (4.6) , that we write

λ j (ζ ) = λ
(0)
j + λ

(1)
j ζ + λ

(2)
j ζ 2 + · · · , j = 1, 2, 3. (4.7)

or, equivalently,

λ j (|ξ |) = λ
(0)
j + λ

(1)
j i |ξ | − λ

(2)
j |ξ |2 + · · · , j = 1, 2, 3.

For simplicity,wewill denote nowasλ1 the real root andλ2,3 the complex conjugate
ones when |ξ | → 0, both when 0 < τ/β < 1/9 and 1/9 < τ/β < 1 (see Remark 4.2
and Proposition 4.1).

123



Appl Math Optim

We can now compute the first coefficients in (4.7) using the characteristic equation
(4.6), obtaining that

⎧⎪⎨
⎪⎩

λ
(0)
1 = −1

τ

λ
(0)
j = 0, λ

(1)
j = ±1, λ

(2)
j = 1

2
(β − τ) for j = 2, 3.

(4.8)

Consequently, we have for |ξ | → 0 that

Re(λ j (|ξ |)) =

⎧⎪⎨
⎪⎩

−1

τ
+ O(|ξ |), for j = 1,

−1

2
(β − τ)|ξ |2 + O(|ξ |3), for j = 2, 3.

(4.9)

Under the assumption 0 < τ < β, it is clear that Re(λ j ) < 0 for all j = 1, 2, 3
when |ξ | → 0.

Remark 4.4 The behavior of the solution of (3.4) depends on the behavior of the
function eRe λ j (ξ)t , j = 1, 2, 3. Since in most cases λ j (|ξ |) is a power series of |ξ |, so
it is its real part. Observe that as Re λ j (|ξ |) < 0, the frequencies that give the dominant
part of all eRe λ j (|ξ |)t are those corresponding to small frequencies |ξ |. For this reason,
the behavior of the real part near |ξ | = 0 determines the decay rate of the solution.
For large frequencies, and again as Re λ j (|ξ |) < 0, it is clear that eRe λ j (|ξ |)t can be
always estimated by e−ct if the powers in the Taylor series expansion ofRe λ j (|ξ |) near
infinity are positive or by |ξ |me−c|ξ |−ĉ t for a certain m > 0 if one of the powers in the
Taylor series expansion is negative. In both cases and using Plancherel’s theorem, we
see that the integral in the high frequencies is bounded if and only if some derivatives
of the solution are bounded, which means that the solution should be in some Sobolev
spaces and this gives the regularity of initial data needed for the desired decay rate.

Next, we proceed to give asymptotic approximations of the eigenvalueswhen |ζ | →
∞. Following [8], we can take η = ζ−1 = (i |ξ |)−1 and write the Eq. (3.4), with L
and A defined in (3.5), as

Ût (η, t) = η−2
(
Lη2 − A

)
Û (η, t),

whose characteristic equation writes as

det(Lη2 − A − μI ) = τμ3 + η2μ2 − βη2μ − η4 = 0. (4.10)

Observe that we have the relation

λ j (ζ ) = ζ 2μ j (ζ
−1)

between μ j (η) and λ j (ζ ), solutions of (4.6) and (4.10) respectively.
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Now, for η → 0 we can write μ j (η) as:

μ j (η) = μ
(0)
j + μ

(1)
j η + μ

(2)
j η2 + · · · , j = 1, 2, 3. (4.11)

Or, equivalently,

λ j (|ξ |) = −μ
(0)
j |ξ |2 + μ

(1)
j i |ξ | + μ

(2)
j + · · · , j = 1, 2, 3.

Plugging (4.11) into (4.10), we get, after performing some computations,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ
(0)
j = 0, for j = 1, 2, 3

μ
(1)
j = 0, μ

(2)
j = − 1

β
for j = 1,

μ
(1)
j = ±

√
β

τ
, μ

(2)
j = − (β − τ)

2βτ
for j = 2, 3.

Consequently, we deduce from above that for |ξ | → ∞ we have

Re(λ j (|ξ |)) =

⎧⎪⎪⎨
⎪⎪⎩

− 1

β
+ O(|ξ |−1), for j = 1,

−1

2

(
1

τ
− 1

β

)
+ O(|ξ |−1), for j = 2, 3,

(4.12)

where we are denoting as λ1 the real root and λ2,3 the complex conjugate ones when
|ξ | → ∞ (see Proposition 4.1). Under the assumption 0 < τ < β, it is clear that
Re(λ j ) < 0 for all j = 1, 2, 3 when |ξ | → ∞.

Let us now divide the frequency space into three regions: low frequency, high
frequency and middle frequency region, that is

ϒL =
{
ξ ∈ R

N ; |ξ | < ν1 � 1
}

, ϒH =
{
ξ ∈ R

N ; |ξ | > ν2 � 1
}

,

ϒM =
{
ξ ∈ R

N ; ν1 ≤ |ξ | ≤ ν2

}
.

The choice of ν1 and ν2 will be discussed in the proofs of Proposition 4.5 and
of Lemma 4.8. For the moment, we need ν1 and ν2 sufficiently small and large,
respectively, such that the asymptotic expansions of Propositions 4.5 and 4.7 hold.

Wewrite the solution of the system (3.1) in the above three regions. In the following
Propositions 4.5, 4.7 and4.9wegive bounds of the solution on each of this three regions
using the previous asymptotic expansions of the eigenvalues. These bounds will be
used in Theorem 5.1 to prove the decay estimate of the solution of problem (1.5).

Proposition 4.5 If 0 < τ < β, the solution Û (ξ, t) of (3.4) satisfies, for all ξ ∈ ϒL

with |ξ | �= 0, the estimates:
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|û(ξ, t)| ≤ CL

(
|ξ |2|û0| + |ξ |2|û1| + |û2|

)
e−c1t

+CL

(
|û0| + |ξ |2|û1| + |û2|

)
e−c2|ξ |2t cos(|ξ |t)

+CL

(
|ξ ||û0| + 1

|ξ | |û1| + 1

|ξ | |û2|
)
e−c2|ξ |2t sin(|ξ |t), for all t ≥ 0.

(4.13)

with c1 = 1
τ
and c2 = β−τ

2 andCL = CL(β, τ ) > 0 (all positive constants).Moreover,
if
∫
RN u1(x)dx = ∫

RN u2(x)dx = 0 we have

|û(ξ, t)| ≤ CL

(
|ξ |2|û0| + |ξ |2|û1| + |û2|

)
e−c1t

+CL

(
|û0| + |ξ |2|û1| + |û2|

)
e−c2|ξ |2t cos(|ξ |t)

+CL
(|ξ ||û0| + ‖u1‖L1,1 + ‖u2‖L1,1

)
e−c2|ξ |2t sin(|ξ |t), for all t ≥ 0.

(4.14)

where L1,1 is the L1-weighted space defined by

L1,1(RN ) =
{
u ∈ L1

(
R

N
)

; ‖u1‖L1,1(RN ) =
∫
RN

(1 + |x |)|u(x)|dx < ∞
}

.

(4.15)

Remark 4.6 Observe that the estimate (4.13) is not satisfied if |ξ | = 0 but, as it is a
set of measure zero, it will not affect the decay of the solution in Theorem 5.1.

Proof According to part 1 of Proposition 4.1, if ξ ∈ ϒL is such that |ξ | is small
enough (that is, |ξ | < ν1 <

√
m1) we know that there exist one real root and two

complex conjugate ones. For simplicity, we are going to denote λ1 the real root and
λ2,3 the complex conjugate ones when |ξ | → 0, both when 0 < τ/β < 1/9 and
1/9 < τ/β < 1 (see Remark 4.2 and Proposition 4.1). Hence, the solution of the Eq.
(3.1) when ξ ∈ ϒL can be written in terms of the corresponding eigenvalues as

û(ξ, t)=C1(ξ)eλ1(ξ)t +eRe(λ2(ξ))t [C2(ξ) cos(Im(λ2(ξ))t)+C3(ξ) sin(Im(λ2(ξ))t)] .
(4.16)

We may use the initial values (3.2) to find the above constants by solving the system

⎧⎪⎨
⎪⎩
C1 + C2 = û0,

λ1C1 + Re(λ2)C2 + Im(λ2)C3 = û1,

(λ1)
2C1 + (

(Re(λ2))2 − (Im(λ2))
2
)
C2 + 2Re(λ2) Im(λ2)C3 = û2

(4.17)

(we are omitting the ξ dependence in order to simplify the notation). By neglecting
the small terms, we have from (4.9) that in ϒL the eigenvalues are:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ1(ξ) ∼ −1

τ
,

λ2(ξ) ∼ i |ξ | − 1

2
(β − τ)|ξ |2,

λ3(ξ) ∼ −i |ξ | − 1

2
(β − τ)|ξ |2.

(4.18)

Solving the system (4.17) and using the asymptotic expressions of the eigenvalues
when |ξ | → 0 in (4.18) we get that, in ϒL ,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C1(ξ) = (−τ 2|ξ |2 + O(|ξ |3)) û0 + (−τ 2(β − τ)|ξ |2 + O(|ξ |3)) û1
+ (−τ 2 + O(|ξ |)) û2,

C2(ξ) = (−1 + O(|ξ |)) û0 + (
τ 2(β − τ)|ξ |2 + O(|ξ |3)) û1 + (

τ 2 + O(|ξ |)) û2,
C3(ξ) =

(
−β+τ

2 |ξ | + O(|ξ |2)
)
û0 +

(
− 1

|ξ | + O(1)
)
û1 +

(
− τ

|ξ | + O(1)
)
û2.

We can now take the following approximate solution of (3.1) and (3.2),

ũ(ξ, t) = C̃1(ξ)e− 1
τ
t + e− β−τ

2 |ξ |2t (C̃2(ξ) cos(|ξ |t) + C̃3(ξ) sin(|ξ |t))

where ⎧⎨
⎩
C̃1(ξ) = −τ 2|ξ |2û0 − τ 2(β − τ)|ξ |2û1 − τ 2û2,
C̃2(ξ) = −û0 + τ 2(β − τ)|ξ |2û1 + τ 2û2,
C̃3(ξ) = −β+τ

2 |ξ |û0 − 1
|ξ | û1 − τ

|ξ | û2.

Observe that, at a first leading order, solving the system (4.17) is equivalent to
solving ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

C1 + C2 = û0,

−C1

τ
− 1

2
C2|ξ |2(β − τ) + C3|ξ | = û1,

C1

τ 2
+

(
1

4
|ξ |4(β − τ)2 − |ξ |2

)
C2 − C3|ξ |3(β − τ) = û2.

which has the previous C̃1, C̃2, C̃3 as exact solution.
It is immediate to see that ũ(ξ, t) satisfies the bound given in (4.13). Also, from the

previous calculus on the asymptotic expressions of C1,C2 and C3 it is clear that

lim|ξ |→0

∣∣û(ξ, t) − ũ(ξ, t)
∣∣ = 0 for all t ≥ 0,

where û(ξ, t) is the exact solution given in (4.16). Hence, the bound (4.13) is also
satisfied by the exact solution û(ξ, t).

To prove (4.14), we assume that
∫
RN u1(x)dx = ∫

RN u2(x)dx = 0. Then, we may
show (see [9, Lemma 3.1])

|ûi (ξ)| ≤ |ξ |‖ui‖L1,1(RN ), i = 1, 2, (4.19)
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where L1,1(RN ) is the L1 weighted space defined in (4.15). Consequently, for |ξ |
small enough, we have

C3 ≤ C
(|ξ ||û0| + ‖u1‖L1,1(RN ) + ‖u2‖L1,1(RN )

)
.

Therefore, taking the last inequality into account, the solution in (4.16) satisfies (4.14).
��

Proposition 4.7 If 0 < τ < β, the solution û(ξ, t) of (3.1) satisfies in ϒH the
estimate:

|û(ξ, t)| ≤ CH

((
1 + 1

|ξ | + 1

|ξ |2
)

|û0(ξ)| +
(

1

|ξ | + 1

|ξ |2
)

|û1(ξ)|

+
(

1

|ξ |2 + 1

|ξ |3
)

|û2(ξ)|
)
e−c3t , (4.20)

for all t ≥ 0, where c3 = min
{
1
β
, 1
2

(
1
τ

− 1
β

)}
and CH = CH (β, τ ) > 0 (all positive

constants).

Proof According to part 1 of Proposition 4.1, if ξ ∈ ϒH such that |ξ | is large enough
(that is, |ξ | > ν2 >

√
m2) we know that there exist one real root and two complex

conjugate ones, namely λ1 and λ2,3. So, as before, the solution of (3.1) can be written
as

û(ξ, t)=D1(ξ)eλ1(ξ)t+eRe(λ2(ξ))t [D2(ξ) cos(Im(λ2(ξ))t)+D3(ξ) sin(Im(λ2(ξ))t)] .
(4.21)

where Di (ξ) can be written in terms of the initial data (3.2) and hence satisfy the same
system as in Proposition 4.5, (4.17). From (4.12) and by neglecting the small terms,
we also know that, when |ξ | → ∞,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ1(ξ) ∼ − 1

β
,

λ2(ξ) ∼ −β − τ

2βτ
+ i |ξ |

√
β

τ
,

λ3(ξ) ∼ −β − τ

2βτ
− i |ξ |

√
β

τ
.

(4.22)

Hence, observe that at a first leading order, solving the corresponding system is
equivalent to solving

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D1 + D2 = û0,

−D1

β
+ D2(τ − β)

2βτ
+ D3|ξ |

√
β

τ
= û1,

D1

β2 + D2
(
(β − τ)2 − 4β3τ |ξ |2)

4β2τ 2
+

D3|ξ |
√

β

τ
(τ − β)

βτ
= û2.
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Solving the corresponding system and using the asymptotic expressions of the
eigenvalues when |ξ | → ∞ in (4.22) we get that in ϒH

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D1(ξ) = (
1 + O(|ξ |−1)

)
û0 +

(
β−τ

β2|ξ |2 + O(|ξ |−3)
)
û1 +

(
τ

β|ξ |2 + O(|ξ |−3)
)
û2,

D2(ξ) =
(
2τ−β

β3|ξ |2 + O(|ξ |−3)
)
û0 +

(
τ−β

β2|ξ |2 + O(|ξ |−3)
)
û1 −

(
τ

β|ξ |2 + O(|ξ |−3)
)
û2,

D3(ξ) =
(

1
β
√

β/τ |ξ | + O(|ξ |−2)
)
û0 +

(
1√

β/τ |ξ | + O(|ξ |−2)
)
û1

+
(

3τ−β

2β2
√

β/τ |ξ |3 + O(|ξ |−4)
)
û2.

In a similar way as in Proposition 4.5, we deduce that (4.20) holds. ��
Lemma 4.8 There is a constant c4 > 0, such that, for all ξ ∈ ϒM,

Re(λ j (ξ)) < −c4 < 0, (4.23)

where λ j (ξ), j = 1, 2, 3 are the eigenvalues of the matrix �(ξ).

Proof Let us recall that ϒM = {
ξ ∈ R

N ; ν1 ≤ |ξ | ≤ ν2
}
and that we have chosen ν1

and ν2 sufficiently small and large, respectively, such that the asymptotic expansions
of Propositions 4.5 and 4.7 hold. That is, we have chosen ν1 and ν2 such that 0 <

ν1 <
√
m1 and ν2 >

√
m2, where m1,m2 are the constants defined in (4.2) and (4.3).

Let us call ξν1 and ξν2 those ξ such that |ξν1 | = ν1 and |ξν2 | = ν2, respectively.
First, suppose that 1

9 < τ
β

< 1. According to parts 1.(b), 2.(a) and 2.(b) of Proposi-
tion 4.1, λ1(ξ) ∈ R and λ2,3(ξ) ∈ C\R for all |ξ | > 0 (in particular, for all ξ ∈ ϒM )
and fulfill

λ1(ξ) < − 1

β
and Re(λ2,3(ξ)) < Re(λ2,3(ξν1)) < 0. (4.24)

Suppose now that 0 < τ
β

< 1
9 . From the choice of ν1, ν2 (see above) and according

to Proposition 4.1, we have λ2(ξν1), λ2(ξν2) ∈ C\R and we can actually divide ϒM in
three parts: ξ ∈ ϒM such that |ξ | ∈ [ν1,√m1), ξ ∈ ϒM such that |ξ | ∈ [√m1,

√
m2]

and ξ ∈ ϒM such that |ξ | ∈ (
√
m2, ν2]. For those ξ such that |ξ | ∈ [ν1,√m1) ∪

(
√
m2, ν2], the same bounds for the real and complex eigenvalues that in the previous

case hold. For those ξ such that |ξ | ∈ [√m1,
√
m2], we recall that λ1,2,3(ξ) ∈ R (see

part 2.(c) of Proposition 4.1) and, hence, we can use part 2.(a) of this proposition and
we obtain λ1,2,3(ξ) < − 1

β
.

Finally, consider the special case in which τ
β

= 1
9 . Again according to Proposition

4.1, (4.24) holds for all ξ ∈ ϒM with |ξ | �= √
m1 = √

m2, which is the one in which
the eigenvalue is a triple real one.Actually, this triple eigenvalue isλ1,2,3 = − 3

β
< − 1

β

and, hence, (4.24) holds for all ξ ∈ ϒM when τ
β

= 1
9 .

Therefore, we can conclude that (4.23) holds in ϒM with c4 =
min

{
1
β
, |Re(λ2,3(ξν1))|

}
> 0. ��

Proposition 4.9 There exists two positive constants CM and c4 such that the solution
û(ξ, t) of (3.1) satisfies in ϒM one of the following estimates:
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|û(ξ, t)| ≤ CM
(|û0(ξ)| + |û1(ξ)| + |û2(ξ)|) e−c4t , if |ξ | �= 0,

√
m1,

√
m2.

(4.25)
or

|û(ξ, t)| ≤ CM (1 + t)
(|û0(ξ)| + |û1(ξ)| + |û2(ξ)|) e−c4t , if |ξ | = 0, or

τ

β
�= 1

9
and

|ξ | = √
m1,

√
m2, (4.26)

or

|û(ξ, t)| ≤ CM (1 + t + t2)
(|û0(ξ)| + |û1(ξ)| + |û2(ξ)|) e− 3

β
t
, if

τ

β
= 1

9
and

|ξ | = √
m1 = √

m2, (4.27)

for all t ≥ 0, where c4 is defined in the proof of Lemma 4.8 and CM = CM (β, τ ).

Remark 4.10 Observe that the estimates (4.26) and (4.27) are satisfied in a set of
measure zero, so they will not affect the decay of the solution in Theorem 5.1.

Proof First, and according to Proposition 4.1, it is clear that for all ξ ∈ ϒM , the
characteristic equation (4.1) has three roots satisfying one of the following cases:

• one real and two complex conjugate roots (see the cases in Proposition 4.1);
• three distinct real roots (see the cases in Proposition 4.1);
• there is one real root and another real root of double multiplicity (if |ξ | = 0, or

τ
β

�= 1
9 and |ξ | = √

m1 or
√
m2);

• a real root with triple multiplicity (if τ
β

= 1
9 and |ξ | = √

m1 = √
m2).

In the following, we discuss the above four cases.
First, suppose (4.1) has one real root and two complex conjugate ones, that, for

simplicity of notation, we will call λ1(ξ) and λ2,3(ξ) respectively (see Remark 4.2).
Then the solution is written as in (4.16):

û(ξ, t) = C1(ξ)eλ1(ξ)t+eRe(λ2(ξ))t [C2(ξ) cos(Im(λ2(ξ))t) + C3(ξ) sin(Im(λ2(ξ))t)]
(4.28)

withC1, C2 andC3 satisfying (4.17). It is clear thatCi (ξ) (that is,Ci (|ξ |)), i = 1, 2, 3,
are bounded in the compact set ϒM . Thus, there exists a constant C > 0 depending
on the bounding constant and ν1 and ν2 such that

|Ci (ξ)| ≤ C(|û0(ξ)| + |û1(ξ)| + |û2(ξ)|), for all ξ ∈ ϒM (i = 1, 2, 3).
(4.29)

This last inequality together with (4.23) and (4.28) leads to (4.25).
Second, if the roots of (4.1) are real and distinct, then the solution of (3.1) is written

as
û(ξ, t) = C1(ξ)eλ1(ξ)t + C2(ξ)eλ2(ξ)t + C3(ξ)eλ3(ξ)t , (4.30)
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where C1, C2 and C3 are satisfying the system

⎧⎨
⎩
C1 + C2 + C3 = û0,
λ1C1 + λ2C2 + λ3C3 = û1,
λ21C1 + λ22C2 + λ23C3 = û2

(4.31)

(that this system was obtained imposing that û(ξ, t) must satisfy the initial conditions
(3.2)). It is not hard to see that (4.29) also holds and therefore (as before) (4.25) is
also satisfied.

Third, we assume that there exists ξ0 ∈ ϒM such Eq. (4.1) has three real roots, one
of them with double multiplicity, λ2(ξ0) = λ3(ξ0) (according to Proposition 4.1 that
is when |ξ0| = 0, or τ/β �= 1/9 and |ξ0| = √

m1 or
√
m2). In this case, the solution

of (3.1) is given by

û(ξ0, t) = C1(ξ0)e
λ1(ξ0)t + (C2(ξ0) + C3(ξ0)t) e

λ2(ξ0)t , (4.32)

where C1, C2 and C3 are the solutions of the system (again obtained imposing the
corresponding initial conditions of û(ξ0, t)):

⎧⎨
⎩
C1 + C2 = û0,
λ1C1 + λ2C2 + C3 = û1,
λ21C1 + λ22C2 + 2λ2C3 = û2.

(4.33)

The same estimates as in (4.29) hold. Consequently, we obtain

|û(ξ0, t)| ≤ CM (1 + t)
(|û0(ξ0)| + |û1(ξ0)| + |û2(ξ0)|

)
e−c4t .

Finally, suppose that we are in the special case of ξ0 ∈ ϒM such that Eq. (4.1) has
a triple real root λ1,2,3(ξ0) = λ(ξ0). According to Proposition 4.1 this would happen
when τ/β = 1/9 and |ξ0| = √

m1 = √
m2 and we would have λ(ξ0) = −3/β. In this

case, the solution of (3.1) is given by

û(ξ0, t) =
(
C1(ξ0) + C2(ξ0)t + C3(ξ0)t

2
)
e− 3

β
t
, (4.34)

where C1, C2 and C3 are the solutions of the system obtained by imposing the corre-
sponding initial conditions of û(ξ0, t):

⎧⎨
⎩
C1 = û0,
λC1 + C2 = û1,
λ2C1 + 2λC2 + 2C3 = û2.

(4.35)

The same estimates as in the previous cases hold and, hence, we obtain

|û(ξ0, t)| ≤ CM (1 + t + t2)
(|û0(ξ0)| + |û1(ξ0)| + |û2(ξ0)|

)
e− 3

β
t
.

��
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5 Decay Estimates

In this section, we show the decay estimates for the solution u(x, t) of the system
(1.5)–(1.6) using the eigenvalues expansion results of Sect. 4.

Theorem 5.1 (L1–initial data) Let (u0, u1, u2) ∈ D(As), s ≥ 1, the space defined
in (2.7), with u0, u1, u2 ∈ L1(RN ) ∩ Hs(RN ), and 0 < τ < β. Then for any t ≥ 0
the following decay estimates hold for all 0 ≤ j ≤ s and certain constants C, c > 0
independent of t and of the initial data:

∥∥∥∇ j u (t)
∥∥∥
L2(RN )

≤ C(‖u0‖L1(RN ) + ‖u1‖L1(RN ) + ‖u2‖L1(RN ))(1 + t)1−N/4− j/2

+C(‖∇ j u0‖L2(RN ) + ‖∇ j u1‖L2(RN ) + ‖∇ j u2‖L2(RN ))e
−ct .

(5.1)

where c = min
{
1
β
, |Re(λ2,3(ξν1))|

}
.

Remark 5.2 Observe that we need to explicitly ask for u0, u1, u2 ∈ L1(RN ) ∩
Hs(RN ), because (u0, u1, u2) ∈ D(As), s ≥ 1, does not imply that u0, u1, u2 belong
to any of these two spaces, and we need the L1-norm of u0, u1, u2 and the L2-norm
of ∇ j u0,∇ j u1,∇ j u2.

Observe that inequality (5.1) does not give the decay of the solutions or the deriva-
tives in some cases, that is j = 0 and N ≤ 4, and j = 1 and N ≤ 2. For all the other
situations, this inequality does give the decay of the solution and of its derivatives.
However, the above estimates can be improved for if N + j ≥ 3 and get the following
Theorem.

Theorem 5.3 Let (u0, u1, u2) ∈ D(As), s ≥ 1, the space defined in (2.7), with
u0, u1, u2 ∈ L1(RN ) ∩ Hs(RN ), and 0 < τ < β. Assume that N + j ≥ 3. Then,
for t ≥ 0, the following decay estimates hold for all 0 ≤ j ≤ s and certain constants
C, c > 0 independent of t and of the initial data:

∥∥∥∇ j u (t)
∥∥∥
L2(RN )

≤ C(‖u0‖L1(RN )+‖u1‖L1(RN ) + ‖u2‖L1(RN ))(1 + t)−(N−2)/4− j/2

+C
(‖∇ j u0‖L2(RN ) + ‖∇ j u1‖L2(RN ) + ‖∇ j u2‖L2(RN )

)
e−ct .

(5.2)

where c = min
{
1
β
, |Re(λ2,3(ξν1))|

}
.

Remark 5.4 It is clear that for N + j ≥ 3, the estimate (5.2) improves the one in
(5.1). While from (5.1) we deduce that when N = 3 or N = 4 the L2-norm of the
solution does not decay (the j = 0 case), from (5.2) we deduce that, for N = 3 or
N = 4, the L2-norm of the solution decays with the rate (1 + t)−1/4 or (1 + t)−1/2,
respectively. Also, for N = 1 and j ≥ 2 or N = 2 and j ≥ 1, the estimate (5.2) gives
faster decay rate than (5.1), but the non-decaying results for the cases N = 1, 2 and
j = 0, 1 cannot be improved using this second estimate.
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Proof of Theorem 5.1 Applying the Plancherel theorem, we obtain

∥∥∥∇ j u (t)
∥∥∥2
L2(RN )

=
∫
RN

|ξ |2 j |û (ξ, t) |2dξ

=
∫

ϒL

|ξ |2 j |û (ξ, t) |2dξ +
∫

ϒM

|ξ |2 j |û (ξ, t) |2dξ

+
∫

ϒH

|ξ |2 j |û (ξ, t) |2dξ. (5.3)

Using Proposition 4.5 (the estimate (4.13)), we have in the low frequency region

∫
ϒL

|ξ |2 j |û (ξ, t) |2dξ

≤ C
∫

ϒL

|ξ |2 j
(
|ξ |4|û0|2 + |ξ |4|û1|2 + |û2|2

)
e− 2

τ
t dξ

+C
∫

ϒL

|ξ |2 j
(
|û0|2 + |ξ |4|û1|2 + |û2|2

)
e−(β−τ)|ξ |2t | cos(|ξ |t)|2dξ

+C
∫

ϒL

|ξ |2 j
(

|ξ |2|û0|2 + 1

|ξ |2 |û1|2 + 1

|ξ |2 |û2|2
)
e−(β−τ)|ξ |2t | sin(|ξ |t)|2dξ

= C(L1 + L2 + L3), (5.4)

where C is a generic constant which may take different values in different places. In
(5.4) we have used the algebraic inequality (x + y + z)2 ≤ 3(x2 + y2 + z2).

For L1 and since |ξ | is small, we have that

L1 ≤
∫

ϒL

|ξ |2 j
(
|ξ |4|û0|2 + |ξ |4|û1|2 + |û2|2

)
e− 2

τ
|ξ |2t dξ

≤ ‖û0‖2L∞(RN )

∫
ϒL

|ξ |2 j+4e− 2
τ
|ξ |2t dξ + ‖û1‖2L∞(RN )

∫
ϒL

|ξ |2 j+4e− 2
τ
|ξ |2t dξ

+‖û2‖2L∞(RN )

∫
ϒL

|ξ |2 j e− 2
τ
|ξ |2t dξ

This gives, by using the estimate ‖ûi‖L∞(RN ) ≤ ‖ui‖L1(RN ), i = 0, 1, 2, and the
bound in (3.25),

L1 ≤ C‖u0‖2L1(RN )
(1 + t)− j−2−N/2 + C‖u1‖2L1(RN )

(1 + t)− j−2−N/2

+C‖u2‖2L1(RN )
(1 + t)− j−N/2

≤ C(‖u0‖2L1(RN )
+ ‖u1‖2L1(RN )

+ ‖u2‖2L1(RN )
)(1 + t)− j−N/2.

For L2 and recalling that 0 < τ < β (dissipative case), by using the estimate (3.26)
and with the same method as before we have

L2 ≤ C(‖u0‖2L1(RN )
+ ‖u1‖2L1(RN )

+ ‖u2‖2L1(RN )
)(1 + t)− j−N/2.
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For the term L3 and using (3.27), we have that

L3 ≤ C‖u0‖2L1(RN )
(1 + t)−N/2− j + C‖u1‖2L1(RN )

(1 + t)2−N/2− j

+C‖u2‖2L1(RN )
(1 + t)2−N/2− j

≤ C(‖u0‖2L1(RN )
+ ‖u1‖2L1(RN )

+ ‖u2‖2L1(RN )
)(1 + t)2−N/2− j .

Collecting the above estimates, we obtain

∫
ϒL

|ξ |2 j |û (ξ, t) |2dξ ≤ C(‖u0‖2L1(RN )
+‖u1‖2L1(RN )

+‖u2‖2L1(RN )
)(1+ t)2−N/2− j .

(5.5)
Next, in ϒH , we can use (4.20) and proceed as above, obtaining that

∫
ϒH

|ξ |2 j |û (ξ, t) |2dξ

≤ C
∫

ϒH

|ξ |2 j
(
(1 + |ξ |−2 + |ξ |−4)|û0(ξ)|2 + (|ξ |−2 + |ξ |−4)|û1(ξ)|2

+ (|ξ |−4 + |ξ |−6)|û2(ξ)|2
)
e−2c3t dξ

≤ C
∫

ϒH

|ξ |2 j
(
|û0(ξ)|2 + |û1(ξ)|2 + |û2(ξ)|2

)
e−2c3t dξ

≤ C(‖∇ j u0‖L2(RN ) + ‖∇ j u1‖L2(RN ) + ‖∇ j u2‖L2(RN ))e
−2c3t (5.6)

where we have used the fact that ξ is in ϒH , so all the terms |ξ |−2, |ξ |−4, |ξ |−6 are
bounded.

Finally, in ϒM , we have, by exploiting (4.25),

∫
ϒM

|ξ |2 j |û (ξ, t) |2dξ ≤ C
(
‖∇ j u0‖2L2(RN )

+ ‖∇ j u1‖2L2(RN )

+‖∇ j u2‖2L2(RN )

)
e−2c4t . (5.7)

Consequently, (5.5), (5.6) (together with the Sobolev embedding) and (5.7), then
the estimate (5.2) and (5.1) hold with c = min{c3, c4}, hence,

c = min

{
1

β
, |Re(λ2,3(ξν1))|

}
.

Observe that, as we had already pointed out in the previous Remarks 4.6 and 4.10, the
values of ξ where we have double or triple real roots are sets of measure zero and,
hence, they do not affect the decay of the solution. ��
Proof of Theorem 5.3 The proof is exactly the same as the one of Theorem 5.1, except
for the estimate of L3 in (5.4). To estimate L3 we have, by using (3.28) and 0 < τ < β

that, for N + j ≥ 3,
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L3 ≤ C‖u0‖2L1(RN )
(1 + t)−N/2− j−1 + C‖u1‖2L1(RN )

(1 + t)−(N−2)/2− j

+C‖u2‖2L1(RN )
(1 + t)−(N−2)/2− j

≤ C(‖u0‖2L1(RN )
+ ‖u1‖2L1(RN )

+ ‖u2‖2L1(RN )
)(1 + t)−(N−2)/2− j .

Collecting the above estimate with the estimates of L1 and L2 in the proof of Theorem
5.1, we obtain

∫
ϒL

|ξ |2 j |û (ξ, t) |2dξ ≤ C
(
‖u0‖2L1(RN )

+ ‖u1‖2L1(RN )

+‖u2‖2L1(RN )

)
(1 + t)−(N−2)/2− j for N + j ≥ 3.

(5.8)

As we have said, the estimates in ϒM and ϒH remain the same as in the proof of
Theorem 5.1. ��
Theorem 5.5 (L1,1–initial data) Let 0 < τ < β and let (u0, u1, u2) ∈ D(As),
s ≥ 1, the space defined in (2.7), with u0, u1, u2 ∈ L1(RN ) ∩ Hs(RN ). Also, let
(u1, u2) ∈ L1,1(RN ) with

∫
RN ui (x)dx = 0, i = 1, 2. Then, for 0 ≤ j ≤ s, the

following decay estimate holds:

∥∥∥∇ j u (t)
∥∥∥
L2(RN )

≤ C(‖u0‖L1(RN ) + ‖u1‖L1,1(RN ) + ‖u2‖L1,1(RN ))(1 + t)−N/4− j/2

+C(‖∇ j u0‖L2(RN ) + ‖∇ j u1‖L2(RN ) + ‖∇ j u2‖L2(RN ))e
−ct

(5.9)

where c = min{c1, c3, c4} (defined in Propositions 4.5, 4.7 and Lemma 4.8, respec-
tively).

Proof The proof is the same as the one of Theorem 5.1, except the part of the low
frequency region. So, for ξ ∈ ϒL , we have by making use of (4.14) that
∫

ϒL

|ξ |2 j |û (ξ, t) |2dξ

≤ C
∫

ϒL

|ξ |2 j (|ξ |4|û0|2 + |ξ |4|û1|2 + |û2|2)e−2c1t dξ

+C
∫

ϒL

|ξ |2 j (|û0|2 + |ξ |4|û1|2 + |û2|2)e−2c2|ξ |2t | cos(|ξ |t)|2dξ

+C
∫

ϒL

|ξ |2 j
(
|ξ |2|û0|2 + ‖u1‖2L1,1(RN )

+ ‖u2‖2L1,1(RN )

)
e−2c2|ξ |2t | sin(|ξ |t)|2dξ

≤ C(‖u0‖2L1(RN )
+ ‖u1‖2L1,1(RN )

+ ‖u2‖2L1,1(RN )
)(1 + t)−N/2− j ,

where we have used that as ξ ∈ ϒL we have e−2c1t ≤ e−2c1|ξ |2t , that the sinus and
cosinus functions are bounded and the inequalities (4.19) and (3.25). Collecting this
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estimate with the other estimates obtained in the proof of Theorem 5.1 for the high and
middle frequency regions and, proceeding in the same way as in the proof of Theorem
5.1, then (5.9) is fulfilled. ��
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