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Abstract— Conventional High Dynamic Range Im-
age (HDRI) generation methods using multiple ex-
posures require a static scene throughout the low
dynamic range image (LDRI) capture. This strongly
limits the application field of HDRI generation. The
system presented in this paper offers an automatic
HDRI generation from LDRIs showing a dynamic
environment and captured with a hand-held camera.

The method presented consists of two modules
that can be fitted into the current HDRI generation
methodology. The first module performs LDRI align-
ment. The second module removes the ghosting effects
in the final HDRI created by the moving objects. This
movement removal process is unique in that it does
not require the camera curve to detect movement
and is independent from the .contrast between the
background and moving objects. More specifically, the
movement detector uses the difference in local entropy
between different LDRIs as an indicator for movement
in a sequence.

Index Terms— High Dynamic Range Imaging

I. I NTRODUCTION

Application domains such as image-based ren-
dering and mixed-reality use photogrammetry when
performing relighting and require input directly
from photographs [5][7]. Photographs often present
a loss of colour information since clipping and
noise will occur in areas which are under- or over-
exposed. This loss of information can have a crucial
impact on the accuracy of the photogrammetric
results. Methods have been created to combine
information acquired from (low dynamic range)
images (LDRIs) captured with varying exposure
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settings, creating a new photograph with a higher
range of colour information called a high dynamic
range image (HDRI). It has now become viable to
use HDRIs in photogrammetry, and new cameras
[2][15][16] are being developed with a higher dy-
namic range than the conventional cameras.

The drawback of generating an HDRI from a
set of LDRIs is that the total capture time with a
standard camera is at least the sum of the expo-
sure times used for programmable cameras. It can
increase further for non-programmable cameras as
the user needs to change the exposure setting man-
ually between the captures. However, in between
each LDRI capture, the environment can change or
the camera can move. This is especially true for
uncontrollable, outdoor scenes and when not using
a tripod. In such cases, combining LDRIs results in
an incorrect radiance reconstruction when using the
currently available HDRI generation tools, such as
HDRshop [6], Rascal [14] or Photomatix [17].

The method presented in this paper, takes as input
a set of manually captured LDRIs and allows the
following two types of movement to take place
during the LDRI capture:
• Camera Movement: While taking LDRIs, the

camera can move due to lens focusing, user
movement, or the user being on a moving
platform such as a boat. The presented method
allows the LDRIs being captured with a hand-
held camera.

• Object Movement: During the LDRI capture
objects are allowed to move between different
frames. The movement does not need to be
of a high contrast nature. The only restriction
imposed is that the moving object is reasonably
small, in order not to interfere with the camera
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(a)

(b) (c) (d)
Fig. 1: (a) A sequence of LDRIs captured with different exposure times. Several people walk through the viewing window. (b) An
HDRI created from the sequence shown in (a) using conventional methods, showing ghosting effects (black squares). (c) Uncertainty
image (UI) shows regions of high uncertainty (bright) due to the dynamic behaviour of those pixels. (d) HDRI of the same scene
after applying movement removal using UI.

alignment, and that the area affected by the
moving object is captured without saturation
or under-exposure in at least one LDRI.

In this paper, a fully automatic framework is pre-
sented that aligns LDRIs and combines them while
removing the influence of object movement in the
final HDRI. Moving objects are automatically iden-
tified using statistical quantities and reconstructed
from one LDRI during the HDRI generation. The
resultant HDRI is free from visible artifacts.

An example is illustrated in figure 1. The se-
quence of LDRIs shown in (a) shows several per-
sons walking through the viewing window of the
camera. In (b) an HDRI is shown that shows ghost-
ing effects inside the black square due to the object
movement visible in (a). In (c) an uncertainty image
(UI) is shown that defines regions of uncertainty
about the static behaviour of the pixels in that area.
UI is created using local entry differences between
the LDRIs. Using this uncertainty imageUI, the
movement areas in (b) are substituted with HDR
information from one careful selected LDRI. The
resulting HDRI shown in (d) is now free from

artefacts.
The remainder of this paper is organised as

follows. Section II gives an overview of the related
work. An overview of the presented system is
given in section III. Subsequently the algorithms
for the camera alignment, movement detection, and
the HDRI generation are explained in sections IV,
V and VI respectively. The results obtained are
discussed in section VII. Finally a conclusion and
some future work are given in section VIII.

II. BACKGROUND

Conventional HDRI generation methods using
multiple exposures [12][4] depend on a good align-
ment between the LDRIs. Usually they require the
use of a tripod throughout the capture, some provide
a manual image alignment tool such as provided
in the Rascal suite [18]. The larger context of
image registration and alignment is well-studied
in the computer vision community. For a good
survey see [3]. However, few of these methods are
robust in the presence of large exposure changes.
This presents a particular challenge for automatic
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alignment algorithms in cases where the camera
response function is not known a priori, since the
response curve cannot be used to normalize the
LDRIs in a way that would make feature detection
and matching reliable.

Four solutions have been presented for image
alignment in an HDRI building context. Ward [23]
introduced the median threshold bitmap (MTB)
technique, which is insensitive to camera response
and exposure changes, demonstrating robust trans-
lational alignment. Bitmap methods such as MTB
are fast, but ill-suited to generating the dense optical
flow fields employed in local image registration.
Kanget al. [9] presented a method that relies on the
camera response function to normalize the LDRIs
and perform local image alignment using gradient-
based optical flow. Sand and Teller [20] presented
a feature-based method, which incorporates a lo-
cal contrast and brightness normalization method
that does not require knowledge of the camera
response curve[21]. Their match generation method
is robust to changes in exposure and lighting, but
faces challenges when few high-contrast features
are available, or features are so dense that matches
become erratic. This is often the case for natural
scenes, whose moving water, clouds, flora and fauna
provide few static features to establish even a low-
resolution motion field. This is where both papers
bring in sophisticated techniques, hierarchical ho-
mography in the case of Kanget al., and locally
weighted regression in the case of Sand and Teller,
to overcome uncertainties in the image flow field.
Even so, local image warping becomes less reliable
as contrast decreases, leading to loss of detail in
regions of the image. Furthermore, moving objects
may obscure parts of the scene in some exposures
and reveal them in others, leading to the optical
flow parallax problem, where there is not enough
information at the right exposure to reconstruct a
plausible HDRI over the entire image. Very recently,
Tomaszewska and Mantiuk [22] have proposed an
algorithm to align LDRIs captured with a hand-held
camera. The algorithm matches key points found
with an automatic algorithm that are then used to
find the transformation matrix solving for general
planar homography.

A different approach by Khanet al. [10] has
recently tackled the problem of moving objects,
and proposed to remove ghost artefacts by adapting
weights to validate each pixels to create the final
HDRI. Weights are calculating from the probability
of each pixel to be part of the background. The
algorithm seems to produce similar results to ours,
although the examples shown are composed of
simple scenes. There is no evidence yet that it could
equally work with low contrast backgrounds like
our algorithm does.

The nominal reason for warping pixels locally
between the LDRIs is to avoid blurring and ghosting
in the HDRI composite. With the presented method
the need for image warping is removed by observ-
ing that each LDRI is a self-consistent snapshot in
time, and in regions where blending images would
cause blurring or ghosting due to local motions,
an appropriate choice of input LDRI to represent
the motion will suffice. This approach allows us to
apply robust statistics for determining where and
when blending is inadequate, and avoids the need
for parallax fill. Certain regions may be slightly
noisier than they would be with a full blend, but
this is an accustomed form of image degradation,
and preferable to the ghosts effects that result from
improper warping and parallax errors.

The success of and the need for HDRIs have en-
couraged the development of cameras with built-in
HDRI processing [2][15][16]. Even an extension to
MPEG video is under consideration [13]. However,
the problem of non-static environments remains.
With HDR cameras, the time required to take a
picture decreases but always remains greater than
the longest exposure time used to capture the set
of LDRIs. Many of the methods we describe could
also be incorporated in HDRI cameras, to reduce
the appearance of artifacts.

III. HDRI GENERATION: AN OVERVIEW

A schematic overview of the general HDRI gen-
eration methodology is given in figure 2. A se-
quence of N LDRIs, labelledLi, are captured with
changing exposure settings. Small misalignments
might exist between theseLi’s. In the presented
method, these are approximated by rotational and
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Fig. 2: HDRI generation methodology: the rounded white and grey boxes are processes that operate on input data and produce
output data. The rounded grey boxes are modules developed for this paper.

translational misalignments around the viewing di-
rection which are recovered using the method pre-
sented in section IV. After alignment theLi’s are
used to calculate the camera response curve. The
camera curve is used to map the intensity values in
Li to irradiance values, creating a set of N floating
point images, labelledEi. To generate the final
HDRI Ef , first the HDRI E is generated in the
conventional manner. Then the irradiance values in
regions containing object movement are removed
and substituted by irradiance information from one
Ei. Note that this overview makes abstraction of
how and when the movement detection proceeds.

IV. CAMERA ALIGNMENT

Usually, small camera movements are inevitable
throughout theLi capture, especially when the im-
ages are captured without the use of a tripod and/or
the exposure settings are set manually. It is usually
fair to assume that the camera movements are small
compared to the geometric dimensions of the scene
being captured. In this paper it is assumed that the
transformation can be approximated as a Euclidean
transformation (rotation and translation). The pre-
sented method is an extension to the alignment
provided by Photosphere [1] which, until recently,
only recovered camera translations. More informa-
tion about the camera alignment implemented in
Photosphere is given in [19].

Alignment algorithms often use scene features
such as edges or pixel intensities to calculate the
camera transformations. Detecting similar scene

features in theLi’s is error-prone as they often
represent different scene content: different inten-
sities, different colours and edges due to under-
or over-exposure effects. An example is given in
figure 3. In (a) and (b) two LDRIs, captured with
a different exposure setting, are shown. Applying
a Canny Edge Detector on (a) and (b) results in
respectively (c) and (d). The edges of the shadow
shown in (a) are clearly not properly detected in (c).

(a) (b)

(c) (d)

(e) (f)
Fig. 3: (a,b) Two LDRIs captured with different exposures. (c,d)
Edge images of the two LDRIs. (e,f) Bitmap images of the two
LDRIs after applying MTB transformation.
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To align theLi’s effectively, the median threshold
bitmap (MTB) transform [23] is adopted, which
uses the median intensity value (MIV) of anLi

as a threshold to transform thatLi into a binary
imageL̂i. MIV splits the pixels in theLi’s into ap-
proximately the same two groups, when saturation
effects are kept to a minimum. An example of two
binary images obtained with the MTB technique is
given in figure 3 (e) and (f).

The alignment itself is implemented as an it-
erative process, where rotational and translational
misalignments are minimized until convergence. To
speed up this process and to reduce the chance of
finding a local minima, the search is implemented
on a binary image tree. The alignment will make
use of the MTB technique to align two exposures.
The XOR difference between two binary imageŝLi

and L̂j obtained after applying the MTB transform
on two exposuresLi and Lj gives a measure for
error. Similarly to [23], the alignment procedure
will find the best transformationT (·), consisting
of a translation vector[Tx, Ty] and rotation angleα
around the center of the image, that when applied
to Li results in the maximum correlation between
the two binary imageŝT (Li) and L̂j .

The alignment of a sequence of LDRIs is imple-
mented as follows. The middle exposure is chosen
as the ground truth; all other exposures are aligned
with respect to this exposure. The middle exposure
Lm or at least the exposure captured in the middle
of the exposure sequence is in general the best
aligned with all other exposure in the sequence.
Each exposureLi (i 6= m) is aligned with the
middle exposureLm, using a binary image tree,
similar to described in [23]. The binary image tree
of size Λ (Λ = 4 in our case) is constructed
as follows. The original imagesLi = L0

i and
Lm = L0

m reside at the lowest level (λ = 0). At
the other levelsλ ∈ [1,Λ], the imagesLλ

i andLλ
m

are down-sampled versions of the original images
with a down-sample factor equal to2λ. The images
Lλ

i (i 6= m) and Lλ
m are first aligned at level

λ = Λ. The calculated transformation is used as
a start seed at levelλ = Λ − 1, where a new
transformation matrix is calculated based on the
images with down-sample factor2Λ−1. This process

is repeated untilλ = 0. At a certain levelλ the
best transformationT (·) (rotation and translation
combined) returns the minimum difference between
the binary images resulting from applying the MTB
procedure onLλ

m and on the transformed image
T (Lλ

i ). The optimal transformationT (·) is found
as the minimum of a set possible transformations.
First the optimal translation[Tx, Ty] (in steps of
one pixel) is found, followed by the best rotation
α (in steps of0.5 degrees), and this process is
iterated until the error converges. The search for
this minimum can fail due to local minimum, but is
less likely to get stuck in a local minima than when
no binary tree is used.

The stability of the MTB alignment method
suffers from noisy pixel intensities around MIV,
which have an undefined influence on the binary
threshold image. This instability can effectively be
controlled by withholding the noisy pixel intensities
from the alignment procedure, i.e., by excluding
pixel intensities that lie within a certain range of
MIV. Alignment is achieved as long as moving
objects are small compared to the dimensions of
the scene, or as long as these moving objects do
not create features in the binary imageŝLi. The
obtained Euclidean transformation will not be equal
to the exact camera transformation, therefore small
misalignments may still be present.

V. M OVEMENT DETECTION

The movement detection phase, will detectmove-
ment clusterswhich are clusters of pixels that are
affected by movement in any of the LDRIs. Dur-
ing the HDRI generation, these movement clusters
will be analyzed and used to remove the ghosting
effects, as will be explained in section VI.

Photosphere [1], and also explained in [19], offers
a manner to detect movement clusters using a vari-
ance measure. While the method offers good results
in most LDRI sequences corrupted by movement,
it has the disadvantage that it requires the camera
curve to be known and that it relies on high contrast
between moving object and background. Section
V-A gives details about the variance detector, and
specifies when such a method will fail to detect
movement. Based on these findings, we decided to
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develop a new type of movement detector based
on the concept of entropy. The advantage of this
method is that it does not require the knowledge of
the camera curve, and that it is independent of the
contrast between moving object and background.
The resulting contrast-independent movement de-
tector is explained in section V-B.

A. Movement detection based on variance

The pixels affected by movement, show a large
irradiance variation over the differentEi’s. There-
fore, the variance of a pixel over the differentEi’s
can be used as a likelihood measure for movement.
The movement cluster is derived from aVariance
Image (VI), which is created by storing the variance
of a pixel over the different exposures in a matrix
with the same dimensions as the imagesLi andE.

Some pixels in theLi’s will be saturated, others
can be under-exposed. Such pixels do not contain
any reliable irradiance information, compared to
their counterparts in the other exposures. When cal-
culating the variance of a pixel over a set of images,
it is important to ignore the variance introduced
by saturated or under-exposed pixels. This can be
achieved by calculating the varianceV I(.) of a
pixel (k, l) as a weighted variance described in [19]
as:

V I(k, l) =

N∑

i=0

Wi(k, l)Ei(k, l)2/
N∑

i=0

Wi(k, l)

(
N∑

i=0

Wi(k, l)Ei(k, l))2/(
N∑

i=0

Wi(k, l))2
−1

(1)
The weightsWi(k, l) are the same as those used
during the HDRI generation. The variance image
can be calculated for one colour channel or as
the maximum of the variance over three colour
channels.

The movement clusters are now defined by ap-
plying a thresholdTV I on VI, resulting in a binary
image V IT . This will not result in nice, well-
defined, closed areas of movement clusters due
to outliers (false positives and false negatives).
For instance, after having aligned the LDRIs with
the method described in section IV some camera

misalignments might remain. This will result in
high variant pixels inV I (especially in the vicinity
of edges) that are not due to object movement.
To define well-defined, closed, movement clusters,
the morphological operations erosion and dilation
are applied to the binary imageV IT . A suitable
thresholdTV I is 0.18.

The generation of the variance image makes use
of the irradiance values of the pixels in theEi’s
and therefore the variance image generation can
only proceed after the camera curve calibration.
The incorporation of the movement detection in
the general HDRI generation framework, previously
shown in figure 2, is given in figure 4.

The method presented so far, defines that high
variant pixels inV I indicate movement. It is impor-
tant to investigate what other influences exist, be-
sides remaining camera misalignments, that might
result in a high variantV I value:

• Camera curve: the camera curve might fail to
convert the intensity values to irradiance values
correctly. This influences the variance between
corresponding pixels in the LDRIs and might
compromise the applicability of the threshold
to retrieve movement clusters.

• Weighting factors: saturation and under-
exposure of pixels in an LDRI can result in
incorrect irradiance values after transformation
to irradiance values using the camera curve.
Defining the weighting factors is not straight-
forward and various different methods exist to
define the weights [19].

• Inaccuracies in exposure speed and aperture
width used: in combination with the camera
curve this produces incorrect irradiance values
after transformation. Changing the aperture
width causes the depth-to-field to change too,
which influences the quality of the irradiance
values.

Relying on the fact that the camera curve trans-
forms correctly the intensity imagesLi to irradiance
imagesEi can be seen as a limitation of the variance
detector. Though it is true that if the camera curve
does not transform correctly the intensities to irra-
diance values the HDRIs do not represent correctly
the environment, there still might be applications
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Fig. 4: An adaptation of figure 2 illustrates where the movement detector based on variance fits inside the general HDRI generation
framework. The variance detector requires the knowledge of the camera curve, and therefore the movement detector takes place
after the camera curve calibration.

for which small errors in HDR values might not
be disastrous while it is important to remove the
ghosting effects.

The following section presents a method to detect
movement without requiring the camera curve. If
the camera curve calibration can occur after the
movement detection, the detected movement clus-
ters could potentially be used throughout the camera
curve calibration to indicate corrupted image data.
This will improve the camera curve calibration.

B. Contrast-independent movement detection

In this section we will describe a method to detect
movement clusters in an image using a statistical,
contrast-independent measure based on the concept
of entropy.

In information theory, entropy is a scalar statis-
tical measure defined for a statistical process. It
defines the uncertainty that remains about a system,
after having taken into account the observable prop-
erties. LetX be a random variable with probability
function p(x) = P (X = x), wherex ranges over
a certain interval. The entropyH(X) of a variable
X is given by:

H(X) = −
∑

x

P (X = x) log(P (X = x)). (2)

To derive the entropy of an imageL, written as
H(L), we consider the intensity of a pixel in an
image as a statistical process. In other words,X is
the intensity value of a pixel, andp(x) = P (X =
x) is the probability that a pixel has intensityx.

The probability functionp(x) = P (X = x) is
the normalized histogram of the image. Normalized
means that the sum of the probabilities needs to be
one. Therefore we divide the histogram values by
the total number of pixels in the image. The pixel
intensities range over a discrete interval, usually
defined as the integers in[0, 255], but thenumber
of bins M of the histogram used to calculate the
entropy can be less than256.

The entropy of an image provides some useful in-
formation about that image. The following remarks
can be made:

• The entropy of an image has a positive value
between[0, log(M)]. The lower the entropy,
the less different intensity values are present
in the image; the higher the entropy, the more
different intensity values there are in the im-
age. However, the actual intensity values do
not have an influence on the entropy.

• The actualorder or organizationof the pixel
intensities in an image does not influence the
entropy. As an example, two images with equal
amounts of black and white intensity values
have the same entropy, even if in the first image
black occupies the right side of the image and
white the left side, and in the second image
black and white are randomly distributed.

• Applying a scaling factor on the intensity val-
ues of an image does not change its entropy,
if the intensity values do not saturate. In fact,
the entropy of an image does not change if
an injective functionis applied to the intensity
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values. An injective function associates distinct
arguments to distinct values, examples are the
logarithm, exponential, scaling, etc.

• The entropy of an image gives a measure of
the uncertainty of the pixels in the image. If all
intensity values are equal, the entropy is zero
and there is no uncertainty about the intensity
value a randomly chosen pixel can have. If
all intensity values are different, the entropy
is high and there is a lot of uncertainty about
the intensity value of any particular pixel.

The movement detection method discussed in this
section has some resemblance to that presented in
[11] and [8]. Both methods detect movement in a
sequence of images, but restrict this sequence to
be captured under the same conditions (illumination
and exposure settings). Our method can be used to
a sequence of images captured under different ex-
posure settings. Our method creates an uncertainty
imageUI, which has a similar interpretation asV I.
Pixels with a highUI entry indicate movement. The
following paragraphs explain how the calculation of
UI proceeds.

For each pixel with coordinates(k, l) in each
imageLi the local entropy is calculated from the
histograms constructed from the pixels that fall
within a 2D windowW with size(2w+1)×(2w+1)
around(k, l). Each imageLi therefore defines an
entropy imageHi, where the pixel valueHi(k, l) is
calculated as:

Hi(k, l) = −
M−1∑
x=0

P (X = x) log(P (X = x)) (3)

where the probability functionP (X = x) is derived
from the normalized histogram constructed from the
intensity values of the pixels within the 2D window
W, or over all pixelsp in:

{p ∈ Li(k − w : k + w, l − w : l + w)} (4)

From these entropy images a finalUncertainty
ImageUI is defined as the local weighted entropy
difference:

UI(k, l) =
N−1∑

i=0

j<i∑

j=0

vij

N−1∑

i=0

j<i∑

j=0

vij

hij(k, l) (5)

hij(k, l) = |Hi(k, l)−Hj(k, l)| (6)

vij = min(Wi(k, l),Wj(k, l)) (7)

It is important that the weightsWi(k, l) and
Wj(k, l) remove any form of under-exposure or
saturation to ensure the transformation between
the different exposures is an injective function.
Therefore they are slightly different from those used
during the HDRI generation. We used a relatively
small hat function with lower and upper thresholds
equal to0.05 and0.95 for normalized pixel inten-
sities. The weightvij is created as the minimum
of Wi(k, l) andWj(k, l), which further reflects the
idea that under-exposed and saturate pixels do not
yield any entropic information.

The reasoning behind thisuncertainty measure
follows from the edge enhancement that the entropy
imagesHi provide. The local entropy is high in
areas with many details, such as edges. These high
entropic areas do not change between the images in
the exposure sequence, except when corrupted by a
moving object or saturation. The difference between
the entropy images therefore provides a measure for
the difference in features, such as intensity edges,
between the exposures. Entropy does this without
the need to search for edges and corners in an
image which can be difficult in low contrast areas.
In fact, the entropy images are invariant to the
local contrast in the areas around these features. If
two image regions share the exact same structure,
but with a different intensity, the local entropy
images will fail to detect this change. This can be
considered a drawback of the entropic movement
detector as it also implies that when one homoge-
nous coloured object moves against another homo-
geneously coloured object, the uncertainty measure
would only detect the boundaries of the moving
objects of having changed. Nevertheless, real-world
objects usually show some spatial variety, which
is sufficient for the uncertainty detector to detect
movement. Therefore the indifference to local con-
trast is only an advantage, in particular compared
to the variance detector discussed in section V-A.

The difference in local entropy between two im-
ages induced by the moving object, depends on the
difference in entropy of the moving object and the
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background environment. Though the uncertainty
measure is invariant to the contrast of these two, it
is not invariant to the entropic similarity of the two.
For instance, if the local window is relatively large,
the moving object is small relative to this window,
and the background consists of many similar static
smaller objects, then the entropic difference defined
in equation 5 might not be large. Decreasing the
size of the local window will result in an increased
entropic difference, but a too small local window
might be subject to noise and outliers. In the current
implementation a window size of5 × 5 returned
good results.

Similarly to section V-A, the movement clusters
are now defined by applying a thresholdTUI on
UI, resulting in a binary imageUIT . Again, this
will not result in nice, well-defined, closed areas of
movement clusters due to outliers (false positives
and false negatives). To define well-defined, closed,
movement clusters, the morphological operations
erosion and dilation are applied to the binary image
UIT . A thresholdTUI equal to0.7 for M = 200
returned satisfactory results. It should be noted
though that this threshold did not seem to be as
robust as the threshold for the variance detector.

Figure 5 illustrates the movement detection us-
ing the uncertainty imageUI within the general
framework given in figure 2. The creation ofUI is
independent from the camera curve calibration. As
mentioned earlier, this has as an extra advantage that
the detection of movement clusters could potentially
be used during the camera calibration phase.

VI. HDRI GENERATION

To generateEf the intensity values inLi are
mapped to irradiance values inEi, and the HDRI
E is constructed in a conventional manner, as a
weighted average of the irradiance values in the
Ei’s. For each movement cluster, the irradiance
values inE are substituted by the irradiance values
from only oneEi. Similar to [19] for the variance
detector, thisEi value is chosen in order to rep-
resent the region with the least saturation. When
more than oneEi is suitable, theEi value with the
longest exposure time is chosen.

Substituting an entire region with irradiance val-
ues from oneEi introduces artifacts at the borders
of that region. To reduce these artifacts, only pixels
values that have aV I or UI entry above a certain
threshold T (higher than the threshold used the
movement clusters in the first place) are substituted
by a weighted average of the original value inE
and the irradiance value in the electedEi.

VII. R ESULTS

In this section some results are shown for the
camera alignment, explained in section IV, and the
movement detector, explained in section V. All
HDRIs shown result from a sequence of LDRIs
captured with a hand-held camera and are preceded
by a camera alignment prior to the HDRI generation
or movement detection, unless stated otherwise.

Figure 6 shows the HDRI generation when no
alignment (a,d), translational alignment (b,e) and
translational and rotational alignment (c,f) are car-
ried out. The left column shows the entire image,
the right column shows an image detail in close-up.
The strange blue and pink colours visible in these
close-ups are the result of the improper weighting
of misaligned pixels during the HDRI generation. In
(f), after recovering the translational and rotational
transformation, the misalignments are the least vis-
ible.

Figure 7 illustrates the performance of the vari-
ance and uncertainty detector applied to the expo-
sure sequence shown in figure 1 (a). (a) illustrates
the HDRI after movement removal using the vari-
ance image shown in (c). (b) illustrates the HDRI
after movement removal using the uncertainty im-
age shown in (d). As expected (a) and (b) are
similar, which indicates thatV I andUI detect the
same movement clusters.

Figure 8 illustrates similar results. (a) illustrates
the HDRI without any object movement removal.
The leaves on the foreground and on the right hand
side show considerable object movement. (b) illus-
trates the HDRI after movement removal using the
uncertainty imageUI shown in (d). For comparison
the variance imageV I is given in (c).V I andUI
have high (bright) values for the borders of the
leaves in the foreground.
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Fig. 5: An adaptation of figure 2 illustrates where the contrast-independent movement detector, explained in section V-B, fits inside
the general HDRI generation framework. The movement detector does not require the knowledge about the camera curve, therefore
the movement detector can take place before the camera calibration.

The following example illustrates the power of
the uncertainty image to detect movement regard-
less of the contrast between moving objects and the
background. Figure 9 (a) shows three LDRIs; the
tree branches and the leaves move throughout the
capture. The variance image (c) detects the move-
ment around the border of the tree correctly but
with more strength than movement of the branches
inside the tree. The uncertainty image (b) detects
movement inside the tree and near the border with
a similar strength, but fails to make a judgement
about the sky due to too many saturation and
under-exposure effects in that area (only the first
exposure shows that are without saturation). The
HDRI before and after movement removal using the
uncertainty image are shown in figure (d) and (e).

VIII. C ONCLUSION AND FUTURE WORK

A method is presented to create an HDRI from
a set of LDRIs captured with different exposure
settings. During the LDRI capture some camera and
object movements are allowed. The potentially neg-
ative influences of these movements are effectively
removed with algorithms presented in sections IV,
V and VI. These algorithms do not require user in-
put, and those compensating for object movements
rely on statistical measurements. The final HDRI
is free form visible artifacts, although it should be

noted that the final HDRI is only an approximation
of the scene’s true irradiance values.

Though the presented method is reasonably ro-
bust and takes care of some camera and object
movement, some caution is needed. There are still a
few possible scenarios for which HDRI generation
remains error-prone.

When a too large object (an object occupying a
large area in the LDRI) moves in the scene, the
presented alignment procedure may fail to align
the different LDRIs. Even when alignment is suc-
cessful the camera curve reconstruction will be
erroneous using the conventional camera calibration
algorithms, and the resulting HDRI will be incor-
rect nonetheless. However, this paper presents a
movement detection method, independent from the
camera curve, that returns movement clusters that
could be used during the camera curve calibration,
which is left as future work.

In the final HDRI movement clusters are sub-
stituted by irradiance values from that LDRI that
does not show saturation in that particular area. It
is possible, however, that no suitable LDRI is avail-
able and as a result the irradiance values in those
regions contain incorrect irradiance information.

Besides camera and object movement, it is possi-
ble that during the LDRI capture the scene illumi-
nation changes as well, for instance due to cloud
movement. This has a significant impact on the
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(a) (d)

(b) (e)

(c) (f)
Fig. 6: HDRI generation and the influence of camera movement. The left column shows the entire HDRI, the right column shows
an image detail in close-up for the following scenarios: no image alignment (a,d), translational alignment (b,e), translational and
rotational alignment (c,f).
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(a) (b)

(c) (d)
Fig. 7: HDRI generation and movement removal for the exposure sequence shown in figure 1 (a). (a) HDRI after object movement
removal using the variance detector discussed in section V-A. (b) HDRI after object removal using uncertainty detector discussed
in section V-B. (c) The variance imageV I used to generate (a). (d) The uncertainty imageUI used to generate (b).

HDRI generation and so far no solutions have been
proposed to take care of these illumination changes.

The uncertainty image offers advantages com-
pared to the variance image. Firstly, it can be
generated prior to the camera curve calibration, and
secondly, it is contrast-independent. The drawback
is that its generation is computationally expensive
and that it can fail to make a decision for object
with very bright or vary dark irradiance values.
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