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Abstract

We present a GPU algorithm to render in real-time surface detail features based on paths, such as
scratches and grooves. Our method efficiently models these features using a continuous represen-
tation that is stored in two textures. The first texture is a grid that specifies the positions of the
features and provides pointers to the second texture containing the paths, profiles and material
information. This data is evaluated by a fragment shader on the GPU, resulting in an accurate
and fast rendering of the surface detail. Such kind of detail is rendered without using additional
geometry, thus considerably reducing the size of the geometry to be processed, allowing real-time
computations. Intersections between features and other special cases are robustly handled by a
CSG analogy. Antialiasing, non-height field features, and visibility computations are also taken
into account. This method allows application of path-based features onto general surfaces just like
traditional textures.



1 Introduction

Up to now, real-time visualization of surface detail has been limited to the generation and us-
age of geometry or sampled data structures as in bump mapping [Bli78], displacement map-
ping [WWT03], or relief mapping [POC05, Tat06], which show aliasing problems for close views
and do not provide a correct solution for filtering in far-views. On the other hand, vector tex-
tures are gaining popularity [QMKO08, NH08|, but are limited to flat 2D representations without
encoding other 3D information besides normal map perturbation techniques [PRZ05]. Visibility
and occlusion issues in these representations have never been treated in the context of vector-based
representations.

This paper presents a feature-based per-pixel displacement mapping technique. It builds upon
previous vector texture representations and per-pixel displacement mapping techniques, and makes
a step forward to achieve a robust and flexible real-time vector based displacement mapping algo-
rithm. The presented method is able to visualize geometry details like scratches, cracks, grooves
and extremely sharp edged features like bricks or edges on manufactured objects. Also, our method
allows accurate visualization of these path-based features in a single pass algorithm by performing
a single write per pixel.

Approach: In this paper, we describe a new real-time method to compute geometric detail like
scratches and grooves in texture-space by using a continuous representation that is stored in two
textures, without relying on additional geometry (albeit with an increase in computational cost).
We use techniques derived from the usage of vector textures in the GPU to store the geometry and
properties of path profiles, and evaluate them in real-time. The first texture is a grid providing
pointers to the second texture which contains the feature paths, profiles and material information.
A fragment shader at the GPU evaluates this data, and generates an accurate and fast rendering
by using a Constructive Solid Geometry (CSG) analogy.

Contributions: We show that the CSG analogy is a very flexible and powerful one, and that
the method presented here allows accurate visualization of path-based features. This is done in a
single pass and by performing only one write per pixel. As a consequence, we have a low-bandwidth
coherent memory access, which is advantageous for many-core architectures. Also, it has efficient
approximate anti-aliasing which allows the rendering of the features from close to distant views.
We use two main approximate filtering techniques, called line-sampling and supersampling. Both
techniques are used in combination to solve both visibility and shadowing anti-aliasing issues.
Moreover, the shader can spatially adapt the number of samples needed according to the local
geometric complexity.

Limitations: Our path-based feature representation shares a few limitations with other vector-
based representations [NHO08]. For example, it assumes a static layout of features, as a dynamic
situation would require re-encoding features at each time step, which is very fast but is not capable
of real-time results. Also, a feature segment can be replicated in many cells it overlaps, but in
our experience there is almost no storage overhead. Also, each cell may have a different number
of features, thus requiring an indirection scheme to avoid data sparseness. Our representation is
limited to path-based features only, not allowing generic detail to be added. Also, we require the
features and the object surface where they are applied to have low curvature.

2 Previous work

The method we present in this paper is closely related to surface detail techniques, real-time vector
texture representations, and scratches and grooves modeling and rendering.

In general, macro-geometric models use general techniques that allow the simulation of different
kinds of surface details, such as bump mapping [Bli78], displacement mapping [WWT03], or relief
mapping [POCO05, Tat06], among others. For an in-depth survey on displacement mapping tech-
niques on the GPU, please refer to [LKUO08|. These macro-geometry models suffer from resolution
problems and are not able to simulate high frequency or close details. The method presented here
addresses these issues in an efficient and natural way.



Our method is also related to real-time vector graphics, which always have had a great appeal
because of their seamless scaling capabilities. In [LBO05], they require a heavy preprocessing that
includes segmenting the contour and embedding each segment in a triangle. Other schemes present
limitations in the number of primitives allowed for each cell: a few line segments [Sen04, TC04,
LHO06], an implicit bilinear curve [TC05,Lov05], two quadratic segments [PRZ05], or a fixed number
of corner features [QMKO06]. Also, Parilov et al. [PRZ05] presented a method for rendering normal
maps with discontinuities, which was restricted to path patterns with no ”'T” junctions, no occlusion
computations and with a unique profile for all features. All these methods share a drawback
of limiting the number of allowed primitives, which is bad for areas which require high detail.
One solution would be to use a finer lattice, but this would greatly increase storage needs. We
use a variable-length cell representation that allows for graphics of arbitrary complexity, having
none of the above mentioned restrictions. Our approach stores feature paths in a way similar
to [QMKO08,NHO8], but here it is used to store a 3D structure, not a 2D one as in the mentioned
methods.

Scratch models simulate small isolated grooves that are individually visible, but not their
geometry yet. These models combine a 2D texture with an anisotropic BRDF model. The texture
specifies the position and path of each feature over the surface, and is represented by an image
with the features painted on it. Examples are the works by Mérillou et al. [MDGO01] and Bosch
et al. [BPMGO04]. Bosch et al. [BPMGO08] propose a method to encode and render grooves similar
to ours, but their method is much slower than the one presented here and not feasible to be
used in real-time applications. Porumbescu et al. [PBFJ05] introduced shell maps, which allow
to add arbitrary small-scale surface detail to a triangulated object, but not at interactive rates.
Later, [JMWO7] introduced techniques that allowed the obtention of interactive frame-rates. The
technique presented here is not as general as these, but allows real-time frame-rates to be obtained.

Naturally, details like grooves can also be included in the geometry model of the objects.
Such an approach is usually taken for interactive sculpting or editing, and several works can be
found dealing with subdivision surfaces or volumetric models. Clearly, our method avoids the fine
discretization required by those methods by transferring those evaluations to the pixel shader, and
thus lowering bandwidth needs without performing scattered updates to the framebuffer, as would
happen with geometry-based approaches.

3 Representing the surface detail

In our approach, details are modeled using a representation based on paths and cross-sections in
texture space, similar to the one described by Bosch et al. [BPMGO04]. Such a representation is
very compact and can be easily applied to any surface having a texture parametrization, without
the need of reprojecting the paths between different surfaces. In addition, paths in texture space
can easily be defined and evaluated in 2D, thus allowing the application of path-based features
onto general objects as traditional texturing techniques.

Here we will assume that the local geometry inside a pixel can be approximated by a set of planar
facets, forming a cross-section that is point-wise perpendicular to the main path direction, following
the path’s local or tangent frame. As long as the assumption of low cross-section variability holds,
this approximation is valid. Also, all of our features are defined to lie below the object surface.
We define another surface, the base surface, to be the effective surface the viewer sees. The path
is specified as lying on the UV texture plane. If we additionally assume that the curvature of the
paths and the surface are locally smooth, we can safely approximate the path by a 2D polyline.
See Figure 1(a). The user can specify paths directly in texture space using a piecewise-linear
approximation of a more general curve, or in 3D world space by defining the paths onto the object
surface and then transforming these onto texture space. Each segment of the polyline representing
the path is called a feature element. Cross-sections are also modeled using a 2D polyline, and
these can penetrate the base surface, protrude from it, or both, but never protrude from the object
surface. Our method also handles non-height field features, as shown in Figure 7. Finally, for each
feature, the user can also choose specific material properties, which can be necessary when these
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Figure 1: The data structures for representing features (a) The grid texture is used to spatially
index each type of possible feature content. (b) Each non-empty entry in the grid texture points
to a list of paths elements, which in turn refer to entries in the list of cross-sections and materials.

are different from the ones of the base surface.

3.1 Data structure definitions

In order to determine in run-time which features will be contained in a projected pixel, we first
precompute a uniform space subdivision of the UV texture plane. This forms a grid of equally
sized cells, where each cell contains a reference to the list of crossing paths, the number of entries
in that list, and the maximum height of the features contained within. If no feature crosses the
current cell, a null reference is stored. To avoid rendering problems, grid resolution should be
chosen so that the cell size is similar to the average feature width. We use a texture for storing this
grid, and a second texture for the associated data. See Figure 1. Actually, for correct rendering,
each grid cell contains all features that cover an extended cell region. This way, when evaluating
a feature path that is close to a cell border, we do not need to evaluate nearby cells.

In the data texture, feature elements and their properties are sequentially stored (Figure 1(b)).
For each feature element, we store in one texture texel its origin coordinates and the vector to
its end in texture coordinates together. In another texel for faster texture access, we store the
references to the associated cross-section and material properties, packed on two floating point
values. We also store path priorities that will be used for the evaluation of special cases like
isolated path endings, intersection ends or corners, see Section 4.4. This way, for each path we
need two contiguous texels, which takes advantage of texture cache coherence. The two empty
channels of the second texel are used for profile perturbations, as explained in Section 4.5. After
all the paths, the data texture contains the cross-sections stored as lists of 2D points, and the
material properties. For each material we use up to four floating-point values, usually containing
the diffuse and specular colors (each packed as a single floating-point value), the specular power,
etc. Notice that the cross-sections and materials are stored separately to avoid duplicates among
features, since most of them tend to share these properties.

3.2 Pre-processing steps

The generation of the needed data structures is performed in an off-line pre-processing stage. As
a first step we convert every feature element to a quad representing in texture space the feature
element extension. The feature element is longitudinal and coincides with the center of the quad,
whose width is equal to the feature width. In a second step, the quads are rendered and the lists of
feature element identifiers are created by rendering the quads representing feature elements using



the depth-peeling technique [Eve99]. Then the result is retrieved to the CPU for lists creation. The
cross-section profiles and the materials are added to the textures at the end of this pre-processing
stage. The whole process only takes a few seconds even for the most sophisticated examples we
tried.

4 Rendering of path-based features

Here, we present the method to render path-based features, implemented on programmable graph-
ics hardware in order to achieve real-time frame-rates. After explaining the basic setup, we will
explain a generalization for profile variations along the paths and antialiasing.

4.1 Finding the features

At rendering time, in the fragment shader units, our algorithm performs a search in texture space
for the intersection between the viewing ray (transformed to tangent coordinates) and the features.
For that, we narrow down the search space by inspecting only the cells that lie on the 2D projection
of the path traveled by the ray, in a similar way to relief mapping [POCO05].

The search algorithm we implemented is a simplification of the algorithm explained in [SvG06).
This algorithm needs a start position and a direction. The starting point is the point where the
view ray intersects the actual geometry surface, that is, the current UV texture coordinates, and
the direction is the viewing ray in tangent space. The algorithm uses a cursor that points to the
current position along the view ray. Initially this cursor is at the starting point. Our goal is to
advance the cursor as far as possible in each iteration until the intersection with the surface is
found. If the ray does not intersect the plane associated with the maximum cell height, the cursor
is advanced to the texel boundary, since the intersection is not inside this cell. Then, the algorithm
continues directly in the adjacent cell. If the height of the cursor is lower than the stored height,
the features are then evaluated for intersection. The process finishes when the ray intersects the
geometry in the current cell. If the intersection with a profile happens outside the current cell, it
is ignored and the next cell is evaluated.

In the case where the object surface is not flat, the algorithm should be modified to take into
account the local curvature, which can be simply done by using the technique described by [OP05]
for correct renderings of geometrically-detailed surfaces and silhouettes.

4.2 Evaluating features: simple case

For each cell where the contained geometry must be evaluated for intersection, the process starts
by retrieving the corresponding data entry from the grid texture at the current cursor, and looking
if that cell contains a feature, more than one or none at all. In the latter case, the ray simply
intersects the base surface, while for the other two cases, the features are retrieved from the data
texture and evaluated. In any case, if the intersection does not lie in the current cell, the search
continues as explained in the previous section. To simplify the following explanations, we will start
with the simplest case of only one feature in a cell (a very usual setting for surfaces with only a
few features).

When no special case is present, the local geometry at the current cell can be approximated
using a 2D cross-section. This greatly simplifies the computations by removing one dimension to
the problem, and can be done due to the assumptions stated in Section 3. Once the feature is
retrieved and no other features are in the cell, the computations for an isolated feature begin.
The profile is projected along the viewing direction onto the horizontal line representing the base
surface. See Figure 2. We use these projected points onto the base line, ordered according to
the viewing direction, to determine the visible segments from the viewpoint and keeping track of
facets that are not occluded in the projected pixel footprint. For point sampling, retrieving the
intersection point is a trivial task. For our approximate antialiasing strategy, this information
about projected faces is used as explained in Section 4.6.
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Figure 2: Projection of the feature profile to get the visible facet

Finally, the shadowing computations are performed. The lighting step of these computations
repeats the previous steps, but this time with respect to the light source direction. In the case of
point sampling, if there is a blocker, i.e. the illuminated facet is different from the visible one, the
point is in shadow. Otherwise, it is illuminated and the material at that point is retrieved, the
normal is computed from the visible facet coordinates, and shading is finally computed. For the
case when an antialiasing approach is used, please refer to Section 4.6.

4.3 Evaluating features: intersecting features

In the case where more than one feature is present in the same cell, computations must be performed
to determine the actual intersection. In this section, we will explain the case of intersecting features,
leaving for the next section the other cases, like intersected ends, isolated ends, or corners. In
order to perform these computations, we use a Constructive Solid Geometry (CSG) analogy, which
takes as inputs the intersections for the isolated grooves as described in the previous section, and
combines them to find the final intersection result. This method is much more elegant, simpler
and faster to compute than the one presented in [BPMGOS].

The first thing to do is to independently compute the intersections of the ray with each profile.
For every profile, this will generate an odd number of intersections. As the profiles are known in
advance, the maximum number of intersections can be pre-computed and used to define the size of
the vectors used in the fragment shader to evaluate the features. So, the key idea of our algorithm
is to compute the intersections of a ray with each individual profile, and combine the results in
order to get the final intersection point.

In this algorithm, we start evaluating the first profile, and, in an iterative process, we evaluate
a new profile and combine the result with the result of the evaluation so far.

If we look at Figure 3, we can see an example with two simple features intersecting. If the
features have no protruding parts, we can think that the features were built by removing material
from the base surface. This is like building the features with Constructive Solid Geometry (CSG),
in the sense that we consider we have a CSG tree: from a flat, solid surface, we subtract the volume
of each of the features in turn, resulting in holes that can be ray-traced [FvDFH90].

But subtracting features is not sufficient if we can have features with protruding parts, as those
paths can not be modeled by subtracting material. Following our CSG analogy, we can think about
adding (union) the material for those peaks, and then subtracting the parts of the feature that
are below the flat base surface, as can be seen in Figure 4(a). It is important to mention that we
must subtract not only the part of the feature that is strictly under the base surface, but we must
subtract a whole wedge, from below the surface extending above it. Furthermore, all the additions
must be performed before any subtraction to obtain the desired result. In practice, this can be
achieved by taking into account that the intersections of a ray and a profile are already sorted by
the intersection process itself. With this classification, a ray that intersects a feature is partitioned
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Figure 3: The crossing of two features is considered as the subtraction of the two volumes from the
base flat surface (left, above). When ray tracing, we compute its spans through the feature body
(right), and we subtract them from the ray path, resulting in the final intersection point (below).

into segments that come from the base surface or addition of material, or segments that come
from the subtraction of material. See Figure 4(b). Now, we combine the segments using a special
operation that performs a subtraction when either segment is subtracting, otherwise it performs
an addition. This procedure is repeated for every groove present in the current cell, subsequently
combining their ray segments. At the end, the visible point is the first addition point found.

4.4 Special geometries

For the special cases such as intersected ends (T-shaped endings), isolated ends, or corners, we
propose a variation of the previous approach that is based on the use of “priority” flags. In an
intersected end, for example, some facets of the non-ending feature (the added one) are prioritized
with respect to the feature that ends. These facets are the ones that remain on the opposite side
of the end, that is, the non-intersected facets (see left of Figure 5). When evaluating the ray
intersections, the ray segments starting at a prioritized facet will always take precedence over the
non-prioritized ones, independently if they are adding or removing material. This will produce the
complete visibility of the prioritized facets and the simulation of the ending for the other feature.

Concerning isolated ends, these are modeled as a kind of intersected end too: we add an extra
feature at the end to represent the facets of the final part of the groove. In this case, we give
priority to all the facets of the ending feature, as shown in the middle of Figure 5. Although this
also holds for corners, the main difference is that, at corners, the prioritized facets depend on the
side where they lie, as can be seen in the right of Figure 5. If facets lie on the external side of the
corner they are labeled with priority, independently of the feature where they lie.

All these different priority flags are stored in the data texture, as stated in Section 3. Since
priorities always affect one side or another of the feature, we do not store one flag per facet, but
a single value that identifies which sides of the feature have priority. According to this value, the
cross-section facets are then labeled depending on the side where they lie. For any given feature,
the priority refers to the next feature in the current cell list, so that we can handle more than one
special case in the same cell.
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Figure 4: (a) When computing the intersection of features, CSG operations must be ordered and
all additions must be performed before any subtraction. (b) When tracing a ray, it is partitioned
in segments coming from an addition (red segments) and from a subtraction (green segments).
Then, tracing a ray becomes a regular CSG ray-tracing operation.

Figure 5: Special situations. From left to right: intersected end, isolated end, and corner. In the
figure, the p; represent the priority of path <.

4.5 Profile perturbations

With a method like the one presented here it is very easy to perform a variation of the path profile
along its length by means of a perturbation function. As explained in Section 3, we left two texture
channels of the second texel for their usage for this purpose. One interesting and flexible way of
doing this is to store the values of a 2D global parametrization of the path into these two entries.
This way, for every feature element, we would know the value of this parameter for both ends of
the segment. For instance, if the path is parametrized in a way such that the parameter has value
1 in one end and 0 in the other, the path can be reduced in size from full width to zero along
its way, as can bee seen in the cracks of Figure 7. This variation can also be associated with a
functional expression, like a sinus (top left of Figure 7) or a polynomial one that could be stored
in the texture and then be evaluated in rendering time.

4.6 Approximate antialiasing

The method presented so far is intended for point-sampling, which generates aliasing artifacts. We
can add an efficient antialiasing, without resorting to A-buffer fragment lists and without extra
memory consumption, at the expense of added computational cost.

In order to compute an anti-aliased version of the shader, the first step is to determine the
footprint of the pixel in texture space, just as in anisotropic texture filtering. This footprint may
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Figure 6: Pixel content is determined in a front to back order, iteratively visiting each 2D profile
in turn. Each time an intersection is found, the pixel footprint is reduced proportionally to the
covered area and the process continues until the footprint is fully covered.

overlap several cells, which would require the evaluation of multiple texels. The exact solution for
this problem was presented in [BPMGOS8], but their solution is unfeasible for real-time rendering.
We decided to implement an approximation by evaluating only those texels lying on the projection
onto the object surface of the line defined by tracing a single ray through the viewing pixel. We
do this in front to back order, reducing the footprint each time an intersection is computed, see
Figure 6. As our cells were extended with nearby information, and we evaluate a reduced number
of cells, in our experiments this approximation resulted in renderings without noticeable artifacts
for short up to medium distances, or not very grazing angles.

Now, depending on the situation we are in, we take two main approaches we call line-sampling,
for isolated grooves, and supersampling for the case of intersecting features (Section 4.3) and the
special geometries (Section 4.4). Finally, we also consider the case of mixed situations, where we
can see through a pixel both isolated grooves and, for instance, intersecting features.

e Line-sampling: As explained in Section 4.2, the simplest case of an isolated groove can be
solved in 2D. As explained, we can identify the parts of the feature segments that are visible
form the viewpoint. Computing an anti-aliased final color for the pixel footprint is just a
sum over all visible feature segments, weighting the color computed for each segment by the
relative size of the projected segment. Computing a segment color is as simple as retrieving
the corresponding material from the data texture and evaluating its BRDF with the normal
of the segment in 3D.

e Supersampling: Because grid texels encode the list of relevant paths, we can evaluate and
combine colors at multiple subpixel samples, without any added bandwidth. Intersecting
grooves and special cases require a different approach. In this case, our system evaluates n
samples within a parallelogram footprint, and blends them using a weighting filter. In all
cases, we evaluate the texel just once, updating all samples as each path element is decoded.
This requires allocating a few temporary registers per sample (e.g. accumulated color).

e Mixed cases: As we mentioned before, we evaluate only the cells lying on the projection
onto the surface of the ray from the eye trough the pixel. For each cell, depending on its
content, we apply iteratively one of the two previous techniques, namely line-sampling or
supersampling. If we apply line-sampling, we reduce the footprint area proportionally to the
ratio of the length of the projected visible segments to the total one-dimensional footprint
length. Again, this approximation has proved to be effective, as no noticeable artifacts can
be seen in our experiments. If we apply supersampling, the footprint reduction ratio is the
number of samples that missed any feature in the current cell (and continued beyond the
current cell) to the total sample number.



4.6.1 Antialiased shadowing

Shadowing anti-aliasing is performed much in the same way as mentioned above. From the visibility
step we know the parts of the features that are visible. Now, depending on that information,
different cases should be taken into account:

e Line-sampling only: As mentioned above, when rendering an anti-aliased isolated grove the
approach of line-sampling is used. To compute the shadowing of each illuminated segment,
we compute the same steps as in Section 4.2 but taking as projection direction the light
direction. As we already know which parts of the grooves are seen from the observer, we
treat each one of the facets in these parts iteratively to compute the hard shadowed areas
and the illuminated ones.

e Supersampling only: When treating a case where there is an intersection or a special case,
and as the intersections for these cases are computed with a point sampling strategy, shadows
are computed exactly the same way: for each sample taken for visibility, we shoot a ray from
the light source and check whether there is an intersection between the point we want to
shade and the light source. If not, the point is illuminated. Otherwise it is in shadows.

e Mixed cases: This is the case of isolated grooves with shadows coming from an intersection
or special case, or the other way round. In both cases, we switch to a point-sampling scheme,
where a ray is traced between the intersection point (or the extremes of the back-projected
lines from line-sampling). It is clear that this sampling scheme represents an approximate
estimate, specially for the isolated grooves where a 2D scheme is back-projected to 3D at
the center of the pixel footprint. The accuracy of this approximation can be ameliorated by
taking more samples at positions obtained by sliding the points along the feature path, and
combining the results adequately.

5 Experimental results

Our method has been implemented as a fragment shader using Cg and the OpenGL API. The
rendering times for the images are included in Table 1, and correspond to the shader running on
a GeForce 8800. As can be seen, this table also includes the memory consumption due to our
different textures as well as their resolution.

In Figure 7, we can see some results of the possibilities that this method opens: features with
curved paths, features with perturbations along their path, like a sinusoidal variation and a linear
one for cracks, one-sided profiles that allow modeling of depressed or protruding surfaces, carved
features like text, and features over curved surfaces.

Observe that the images show masking and shadowing effects and different special situations
like groove intersections, ends, or corners. Our method allows the correct rendering of all these
effects at real-time frame rates. Furthermore, our textures require a low memory consumption: the
grid textures used in these examples are very small, going from 25x25 to 125x125 (see Table 1),

Figure fps Mem Text res

7 top left 245.0 49 75x75 [ 42x42
7 top middle 56.6 12 25x25 / 24x24
7 top right 156.4 1 2x2 / 8x8

7 bottom left 193.2 64 100x100 / 39x39
7 bottom middle  36.8 50 T5x75 / 42x42
7 bottom right 425.6 8 25x25 / 16x16
11 left 127 159 100x100 / 88x88
11 middle 73.7 159 100x100 / 88x88
11 right 169.1 159 100x100 / 88x88

Table 1: Performance of our method for each figure. In this case, rendering times are in frames
per second and memory in Kb. The resolution of the two textures is also included.



Figure 7: Some examples of path-based features. From top left to bottom right: a curved path
with a sinusoidal profile variation, a non-height field profile, a one-sided profile (with a square
path), cracks, grooves and complex-profile scratches onto spherical shapes.
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Figure 8: Comparison between geometry (left, 49/50 fps), relief mapping (RM) (middle, 181/599
fps) and our method (right, 198/315 fps). RM uses a 512x512 texture. Geometry: 698107 triangles
(Maya feature-based displacement mapping). The other two: 14948 triangles. Timings are for the
far(upper) /close(lower) images.
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Figure 9: Antialiasing at the Sponza Atrium scene: from left to right, relief mapping (49 fps), 1
sample (65 fps) and our approximate antialiasing scheme (22 fps).

and data textures are even lower. The resolution of the grid texture only determines our efficiency
when finding if the current point contains a feature or not: the less features are contained in the
cells, the faster becomes the shader. Texture resolution depends on the resolution of the grid, the
number of groves and on the pattern or properties of the features. Image-based techniques such
as relief mapping would require high resolution textures in order to obtain a similar quality. For
example, in Figure 8, we can see the same feature rendered with displacement-mapped geometry,
relief mapping and our technique. The amount of geometry needed to get details clearly shows
the advantages of texture-based methods. Also, when comparing with relief mapping, even with
highly detailed textures, such kind of sharp detail can not be correctly simulated without using
a feature-based approach like the one presented here. This can also be seen in Figure 9. Also,
observe the good performance of our method in comparison with the other two approaches.

In Figure 9, we can see the Sponza Atrium scene rendered with relief mapping, with n = 1
sample per pixel and with our approximate anti-aliasing scheme. Observe how the mip-mapping
scheme of relief mapping [POCO05] erases the details for medium distances. When comparing with
supersampling alone for all cases, we have observed the frame-rate decreases with the number
of samples, as the computation has a cost that scales as O(n). It must be mentioned that it is
performed entirely on local data, and is therefore amenable to additional parallelism.

Finally, Figures 10 and 11 show two examples of more complex scenes composed of several
grooved surfaces, using a square profile (Figure 10 also shows variation in profiles along the feature
paths). To simulate the bricks, some of the facets use the material properties of the base surface
(bricks) and others the properties of the grooves (mortar). This is specially noticeable in the right
image of Figure 11, which represents a close-up of the region shown in the middle image of the
same figure. Since several groove surfaces must be processed and these contain many grooves, the
frame rates are much lower in this case (see Table 1). Nevertheless, the timings are fast enough
and the interactivity is not lost.
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Figure 10: Sponza Atrium rendered from different viewpoints using our approach to simulate the
bricks. Frame-rates are, from left to right: 25, 42.4, 39.9 fps (with approximate antialiasing).

Figure 11: House rendered in real-time from different viewpoints using our approach to simulate
the bricks. The underlying mesh is shown on the left.

6 Discussion and limitations

As seen above, the complexity of each grid cell depends linearly on the number of features crossing
that cell, so complexity can be arbitrary and can be introduced only where strictly needed. Also,
the time needed by each fragment shader depends on this number of features, so empty cells are
really quick to evaluate.

The anti-aliasing strategy described in Section 4.6 relies on simplification assumptions that
break down when the full pixel footprint grows larger than a few texels. The ideal solution would
be, then, to resort to some sort of mipmapping strategy. Unfortunately, and to the best of our
knowledge, up to now there is no closed solution for the problem of filtering with local occlusion,
shadowing and masking [HSRGO07]. Research in this problem clearly is beyond the scope of this
paper. Nevertheless, it is possible to switch to some sort of normal or BRDF distributions and use
the solutions presented in [HSRGO07] and [IT08], although these solutions would ignore occlusions
and thus would result in an unrealistic result. The same would happen if we switch to a Relief
Mapping solution and use the mipmapping described in [POCO05].

It is important to analyze the influence of the grid size in the requirements and performance
of this method. As expected, as the grid increases resolution, lists of paths for each texel will get
shorter in average, but at an increased total memory cost. For certain texels, however, this length
has a lower bound, as a texel of any size that covers the intersection of, let’s say, 4 scratches, will
have (at least) a length of 4 entries. Although reducing list average length means fewer evaluations
at each grid cell, the increase in grid resolution also implies more cells to evaluate in the search
(specially for more grazing angles), and this behavior dominates over the reduction in list sizes.
This can be seen in the Figure 12. Other search strategies can be implemented, like the ones
described in [LKUO0S].

Also, when a pixel footprint grows larger than the overlap region, we could switch to a texture
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Figure 12: Memory requirements and framerate as a function of grid resolution for two viewing
angles (40 and 70 degrees) for the top left image in Figure 7.

that stores the parameters of a BRDF based on an anisotropic model [KS00]. At points with fea-
tures, they would store anisotropic parameters according to the current path. At the other points,
they would store isotropic parameters corresponding to the surface reflection. These parameters
could then be used to compute the BRDF during the rendering stage.

Framerates are clearly dependent on the number and complexity of the cells with intersecting
features. The bigger the number of cells with intersecting features, or the more features intersect
in those cells, the slower the evaluation would be. However, as can be seen above, our algorithm
provides high framerates even for really complex layouts.

One important limitation to mention is that the textures used by our method need to be
precomputed, which greatly difficult the editing of the features or their properties. Thus, it is clear
that having animated features would be almost impossible without changing dynamically both
textures.

7 Conclusions

In this paper, we present a method to compute path-based features that can model scratches,
features and other kind of similar phenomena. We have successfully generated several patterns,
including non-height field patterns, bricks, cracks, flat depressions and patterns with perturbations
along their lengths. The method can be successfully applied even onto curved surfaces without
modifications. Also, it has efficient antialiasing, and does not present extra memory consumption,
at the expense of added computational cost. Even with many samples, framerates remain inter-
active. We can conclude that the method is both robust and accurate, providing surface detail
with a quality only possible with geometry. It behaves much better in terms of quality than other
techniques like Relief Mapping.
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