
Real-Time Path-Based Surface Detail

Carles Bosch, Gustavo Patow

Grup de Geometria i Gràfics
Universitat de Girona
E-17071 Girona, Spain

Abstract

We present a GPU algorithm to render path-based 3D surface detail in
real-time. Our method models these features using a vector representation
that is efficiently stored in two textures. First texture is used to specify
the position of the features, while the second texture contains their paths,
profiles and material information. A fragment shader is then proposed to
evaluate this data on the GPU by performing an accurate and fast rendering
of the details, including visibility computations and antialiasing. Some of our
main contributions include a CSG approach to efficiently deal with intersec-
tions and similar cases, and an efficient antialiasing method for the GPU.
This technique allows application of path-based features such as grooves and
similar details just like traditional textures, thus can be used onto general
surfaces.

Key words: surface detail, real-time rendering, vector graphics

1. Introduction

Up to now, real-time visualization of surface detail has been limited to
the generation and usage of geometry or sampled data structures as in bump
mapping [1], displacement mapping [2], or relief mapping [3, 4], which show
aliasing problems for close views and do not provide a correct solution for
filtering in far-views. On the other hand, vector textures are gaining popular-
ity [5] [6], but are limited to flat 2D representations without encoding other
3D information besides normal map perturbation techniques [7]. Visibility

Email addresses: cbosch@ima.udg.edu (Carles Bosch), dagush@ima.udg.edu
(Gustavo Patow)

Preprint submitted to Computer & Graphics March 3, 2010



Figure 1: The Knight Champion rendered from different viewpoints and distances using
our approach (left images, 59 ∼ 78 fps) and relief mapping (right images, 57 ∼ 81 fps)
to simulate the armor engravings. Observe how our anti-aliasing strategy correctly repro-
duces the grooves visibility while relief mapping produces noticeable artifacts (insets).

Figure 2: The presented method is capable to visualize geometry details like scratches,
cracks, grooves and extremely sharp edged features without the amount of geometry
needed to get the details. This clearly shows the advantages of texture-based methods.
Left: the full model. Middle: the base geometry. Right: the generated detail.

and occlusion issues in these representations have never been treated in the
context of vector-based representations.

This paper presents a feature-based per-pixel displacement mapping tech-
nique. It builds upon previous vector texture representations and per-pixel
displacement mapping techniques, and makes a step forward to achieve a
robust and flexible real-time vector based displacement mapping algorithm
(See figure 1). The presented method is capable to visualize geometry details
like scratches, cracks, grooves and extremely sharp edged features like bricks
or edges on manufactured objects. Also, our method allows accurate visual-
ization of these path-based features in a single pass algorithm by performing
a single write per pixel.

Approach: Our real-time method computes 3D geometric detail in texture-
space by using a continuous representation that is stored in two textures,

2



without relying on additional geometry (albeit with an increase in compu-
tational cost). See Figure 2. We use techniques derived from the usage of
vector textures in the GPU to store the geometry and properties of the fea-
tures, and evaluate them in real-time. The first texture is a grid that specifies
the positions of the features, providing pointers to the second texture which
contains the feature paths, profiles and material information. A fragment
shader at the GPU evaluates this data, and generates an accurate and fast
rendering by using a Constructive Solid Geometry (CSG) analogy.

Contributions: The new method presented here is the first real-time ap-
proach to present 3D vector-based surface detail other than flat textures. In
particular, it allows accurate visualization of path-based features, although
this could be extended to other features as well. We also introduce a CSG
analogy that is both flexible and powerful. The visualization is done in a
single pass and by performing only one write per pixel. As a consequence,
we have a low-bandwidth coherent memory access, which is advantageous
for many-core architectures. Also, it has efficient approximate anti-aliasing
which allows the rendering of the features from close to distant views. We use
two main approximate filtering techniques, called region-sampling and super-
sampling. Both techniques are used in combination to solve both visibility
and shadowing anti-aliasing issues.

Limitations: Our path-based feature representation shares a few limita-
tions with other vector-based representations [6]. For example, it assumes a
static layout of features, as a dynamic situation would require re-encoding
features at each time step, which is very fast but is not capable of real-time
results. Also, a feature segment can be replicated in many texels it overlaps,
but in our experience there is almost no storage overhead. Also, each texel
may have a different number of features, thus requiring an indirection scheme
to avoid data sparseness. Finally, we require the features and the object sur-
face where they are applied to have low curvature, in order to obtain correct
visibility computations.

2. Previous Work

The method we present in this paper is closely related to surface de-
tail techniques, real-time vector texture representations, and scratches and
grooves modeling and rendering.

In general, macro-geometric models use general techniques that allow the
simulation of different kinds of surface details, such as bump mapping [1], dis-

3



placement mapping [2], relief mapping [3] or parallax mapping [8, 4], among
others. For an in-depth survey on displacement mapping techniques on the
GPU, please refer to [9]. These macro-geometry models suffer from resolution
problems and are not able to correctly simulate high frequency or very close
details. Compared to these approaches, the method presented here addresses
these issues in an efficient and natural way, as can be seen in Figure 1.

Our method is also related to real-time vector graphics, which always have
had a great appealing because of their seamless scaling capabilities. In [10],
they require a heavy preprocessing that includes segmenting the contour and
embedding each segment in a triangle. Other schemes present limitations in
the number of primitives allowed for each texel: a few line segments [11] [12]
[13], an implicit bilinear curve [14], two quadratic segments [7], or a fixed
number of corner features [5]. Also, Parilov et al. [7] presented a method
for rendering normal maps with discontinuities, which was restricted to path
patterns with no ”T” junctions, no occlusion computations and with a unique
profile for all features. All these methods share a drawback of limiting the
number of allowed primitives, which is bad for areas which require high detail.
One solution would be to use a finer lattice, but this would greatly increase
storage needs. We use a variable-length texel representation that allows
for patterns of arbitrary complexity, having none of the above mentioned
restrictions. Our approach stores feature paths in a way similar to [5, 6], but
here it is used to store a 3D structure, not a 2D one as in the mentioned
methods.

Scratch models simulate small isolated grooves that are visible but where
their geometry is imperceptible. These models combine a 2D texture with an
anisotropic BRDF model. The texture specifies the position of each scratch,
while the BRDF is used to compute their reflection. Examples are the works
by Merillou et al. [15] and Bosch et al. [16]. Recently, an extension has
been proposed to deal with more general path-based features, which removes
the limitations on the size of the features or their geometric cases (e.g. in-
tersections) [17]. Our method is based on a similar idea, but our rendering
techniques are GPU-friendly, which results in real-time frame rates for a
similar rendering quality.

Porumbescu et al. [18] introduced shell maps, which allow to add arbi-
trary small-scale surface detail to a triangulated object, but not at interactive
rates. Later, [19] introduced techniques that allowed the obtention of inter-
active frame-rates. The technique presented here is not as general as these,
but allows real-time frame-rates to be obtained.

4



Naturally, details like grooves can also be included in the geometry model
of the objects. Such approach is usually taken for interactive sculpting or
editing. Clearly, our method avoids the fine discretization required by those
methods by transferring those evaluations to the pixel shader, and thus low-
ering bandwidth needs without performing scattered updates to the frame-
buffer, as would happen with geometry-based approaches.

3. Overview

In this work we represent 3D geometric detail with a continuous represen-
tation based on paths and cross-sections in texture space. This information
is stored in two textures: the first one is a grid overlaid on the surface fea-
tures, where each cell provides the positions of the features themselves and
references the second texture. This second texture contains the geometry and
properties of the feature path profiles, and material information. As men-
tioned, the proposed method does not need additional geometry to represent
these surface details.

At runtime, our algorithm performs a search in texture space for the in-
tersection between the viewing ray (transformed to tangent coordinates) and
the features, sequentially evaluating the contents of each texel along the pro-
jected ray. In order to perform an accurate and fast rendering of the features,
we use a Constructive Solid Geometry (CSG) analogy to compute the inter-
section between each viewing ray and the features in each texel. Evaluation
of profile perturbations are taken into account, and shadowing is computed
by tracing rays in texture space from the light source to the intersection
point of the viewing ray and the features. To improve rendering quality,
two antialiasing approaches are also proposed: a region sampling strategy
for isolated features and a supersampling approach for multiple cases.

4. Representing the Surface Detail

4.1. Detail Representations

In our approach, details are modelled using a representation based on
paths and cross-sections in texture space, similar to the one described by
Bosch et al. [17]. Such a representation is very compact and can be easily
applied to any surface having a texture parametrization, without the need
of reprojecting the features between different surfaces. In addition, paths
in texture space can easily be defined and evaluated in 2D, thus allowing

5



the application of path-based features onto general objects as traditional
texturing techniques.

In our implementation, we support paths formed both by linear and/or
quadratic segments. These paths are specified as lying on the UV texture
plane. See Figure 3. The user can specify paths directly in texture space by
providing a sequence of 2D points or in 3D world space by defining the paths
onto the object surface and then transforming these onto texture space. The
obtained set of points define a sequence of linear and/or quadratic segments
(called feature elements). Another alternative is to generate the engravings
directly by vectorizing an artist-provided displacement map. See Figure 1
and Section 6.

All of our features are defined to lay strictly below the object surface,
so we implicitly define another surface, the base surface, to be the effective
surface the viewer sees. This base surface lays below the object surface. See
Figure 4. Here we assume that cross-sections may be approximated by a
set of planar facets, forming a profile that is point-wise perpendicular to the
main path direction and following the path’s tangent frame. Cross-sections
can thus be modelled using a 2D polyline, and these can penetrate the base
surface and/or protrude from it. This kind of representation can easily handle
non-height field features as well. See Figure 8. Finally, for each feature, the
user can also choose specific material properties, which can be necessary
when these are different from the ones of the base surface. Also, in Figure 8
(middle and right in the bottom row) we can see that our algorithm correctly
handles cases where the object surface is not flat by tracking an approximate
curvature along the ray [20]. For the situation where the ray crosses a chart
boundary, ray tracing can continue as described in [21].

4.2. Data Structure Definitions

In order to store all the previous information for its efficient evaluation
into the GPU, we use two textures, as mentioned before. The first one spec-
ifies the location of the different features and serves as a uniform grid, where
each texel contains a reference to the list of crossing features, the number of
entries in that list, and the maximum height of the features contained within.
If no feature crosses the current texel, a null reference is stored. These lists
are then stored in the second texture called data texture, as explained below.
See Figure 3. Actually, for correct rendering, features are extended prior to
determine which texels are covered. This way, when evaluating a feature that

6



is close to a texel border, we do not need to evaluate nearby texels, especially
during antialiasing, as explained in Section 5.7.

Paths

(a)

Prof   mat

Feature
elements

Cross-sections
Materials

N

p1.x
p1.y

R  G  B A
power

R  G  B A
diffuse
specular

Data textureGrid texture

q1 q2

Feature element

Profile

Material

Paths

Geometric Data

p2.x
p2.y
p3.x
p3.y

p2

p1

p3
N = 5

p4

p5

…

(b)

Figure 3: Data structures for the features: the grid texture is used to spatially index each
type of possible feature content. Each non-empty entry points to a list of feature elements,
which in turn refer to entries in the list of cross sections and materials.

In the data texture, the lists of features and their properties are sequen-
tially stored (Figure 3). At this point, each feature element (segment) is
considered as an independent feature, so in fact, we only need to store fea-
ture elements in the lists. For each feature element, depending if its linear or
quadratic (needing a 1-bit flag to choose), we store different information. For
linear elements we store together in one texture texel its origin and the vector
to its end coordinates, while for quadratic elements we store its three defining
vertices (plus weights, if needed) in two texels [6]. In another following texel,
we store the references to the associated cross-section and material proper-
ties, packed on a single floating point value. We also store path priorities
that will be used for the evaluation of special cases like feature ends or inter-
sections, see Section 5.4. This way, for each path we need only two or three
contiguous texels, which takes advantage of texture cache coherence. The
two empty channels of the last texel may be used for profile perturbations,
as explained in Section 5.5.

After all this data, the data texture contains the cross-sections and the
material properties. Cross-sections are stored as lists of 2D points, with the
number of points included at the beginning of each list (see Figure 3(b)). For
each material, we use up to four floating-point values, usually containing the
diffuse and specular colors (each packed as a single floating-point value), the

7



specular power, etc. Notice that the cross-sections and materials are stored
separately to avoid duplicates among features, since most of them tend to
share these properties.

To avoid rendering problems, grid resolution should be chosen so that
the texel size is similar to the average feature width, see Section 6. In our
experiments, texture resolutions for the grid texture ranged from 22 to 2502

for the more complex examples (the Knight Champion in Figure 1). See
Table 1 for more details.

4.3. Pre-Processing Steps

The generation of the needed data structures is performed in an off-line
pre-processing stage. As a first step we convert every feature element to
some representative geometry. For linear feature elements, we use a quad
representing in texture space the feature element extension. In this case,
the feature element is longitudinal and coincides with the center of the quad,
whose width is equal to the (extended) feature width. In the case of quadratic
arcs, for each curve we generate a quad that bounds the curve and we render
it in texture space using the method described in [6].

In a second step, the quads associated with the feature elements are
rendered and the lists of feature elements are created by rendering these
quads using the depth-peeling technique [22]. Then the result is retrieved
to the CPU for lists creation. The cross section profiles and the materials
are added to the textures at the end of this pre-processing stage. The whole
process only takes a few seconds even for the most sophisticated examples we
tried. In any case, this behavior is linear in the number of feature elements,
so the pre-processing cost is reasonably small.

Notice that the previous data is always stored in blocks of four values,
which represents a single RGBA texel in the texture. Our objective is to
use as few texels as possible, so that fewer texture accesses are needed at
runtime, one of the expensive operations in a GPU program.

5. Rendering of Path-Based Features

Here, we present the method to render path-based features, implemented
on programmable graphics hardware in order to achieve real-time frame-
rates. After explaining the basic setup, we will explain a generalization for
profile variations along the paths as well as our antialiasing extensions.

8



Object surface

Base surface

Maximum 
cell height

Starting point

Texel

current surface point

Figure 4: Projection of the feature profile to get the visible facet

5.1. Finding the Features

At rendering time, in the fragment shader units, our algorithm starts by
performing a search in texture space for the intersection between the viewing
ray (transformed to tangent coordinates) and the features. For that, we
narrow down the search space by inspecting only the texels that the ray
actually follows in the first texture: The texels laying on the 2D projection
of the path travelled by the ray, in a similar way to relief mapping [3], but
without skipping any texel.

The search algorithm we implemented is a simplification of the algorithm
explained in [23]. The algorithm needs a start position and a direction. The
starting point is the point where the view ray intersects the object surface
(i.e., the current UV texture coordinates), and the direction is the direction
of the viewing ray in tangent space. See Figure 4. The algorithm uses a
cursor that points to the current position along the view ray. Initially this
cursor is at the starting point. Our goal is to advance the cursor as far as
possible in each iteration until the intersection with the base surface or a
feature is found. So, if the ray does not intersect the plane associated with
the maximum texel height, the cursor is advanced to the texel boundary,
since the intersection is not inside this node. Then, the algorithm continues
directly in the adjacent node. If the height of the cursor is lower than the
maximum texel height, the features inside that texel are then evaluated for
intersection. The process finishes when the ray intersects the geometry in

9



the current texel. Of course, if the intersection happens outside the current
texel boundaries, it is ignored and the next texel is evaluated. We can see the
pseudo-code for this operation at the Algorithm 1, where featureHeights is
the value into the grid texture that stores the maximum height of the features
for each texel, intersection(ray, features(cursor)) is the algorithm for the
intersection computations between the ray and the features, which we will
describe in the following sections, and outOfBounds(cursor) is a function
that evaluates whether the ray is outside the grid texture limits or not.

Algorithm 1 Feature computations

1: cursor = (u,v)
2: while not outOfBounds(cursor) do
3: if intersection(ray, next texel).height ≥ featureHeights(cursor)

then
4: Advance cursor to next texel
5: else
6: if intersection(ray, features(cursor)) then
7: return cursor
8: else
9: Advance cursor to next texel

10: end if
11: end if
12: end while
13: return no intersection found

In the case where the object surface is not flat, the algorithm should be
modified for correct renderings. To take into account the local curvature, it
can be simply done by modifying the direction of the viewing ray at each
visited texel by taking into account the shape of the object. For instance,
this can be done by simple tracking an approximate curvature along the ray,
as described by [20], or by also taking into account the stretching introduced
by the parameterizations, as done in [24].

5.2. Evaluating Simple Cases

For each texel where the contained geometry must be evaluated for inter-
section, the process starts by retrieving the corresponding data entry from
the grid texture at the current cursor, and looking if that texel contains fea-
tures or not (i.e. the entry is valid or not). If no features are found, the ray

10



simply is verified for intersection with the base surface, while for the former
the features are retrieved from the data texture and evaluated. In any case,
if the intersection does not lay in the current texel, the search continues as
explained in the previous section. See pseudocode at Algorithm 2, where
mat stands for material and N for the surface normal.

Algorithm 2 Intersection computations (ray, features)

1: Retrieve feature attributes from grid
2: if There are features at cursor then
3: if Isolated feature then
4: ProcessIsolatedFeature(cursor, features) → mat,N
5: else
6: ProcessIntOfFeatures(cursor, features) → mat,N
7: end if
8: else
9: Compute ray/base-plane intersection → mat,N

10: end if
11: Compute shading(mat,N) → color

To simplify the following explanations, we will start with the simplest
case of only one feature in a texel (a very usual setting for surfaces with only
a few features). In the next section we will extend this explanation for the
case where more feature elements are present in the same texel.

In this simpler case, the local geometry at the current texel can be approx-
imated using a 2D cross-section. This greatly simplifies the computations by
removing one dimension to the problem, and does not introduce significant
errors as long as the local feature curvature or the cross-section’s perturba-
tion is not high [17]. Once the feature element is retrieved along with its
cross-section, the computations for the isolated feature begin. For intersect-
ing a single ray with the 2D profile of a feature element, we should project
the ray onto the local cross-section plane and intersect it with each profile
segment. This, however, can be simplified by using a point-sampling adap-
tation of the algorithm explained in [17]. Using this approach, we simply
project each profile facet onto the base surface according to the ray direc-
tion, and evaluate each segment against the current surface point, which can
be done with simple 1D operations. The surface point is here represented by
the distance between the intersection of the ray with the base surface and

11



the current path direction, as depicted in Figure 4. By sequentially evalu-
ating the facets according to the ray direction, notice that we automatically
deal with any possible occlusion between the facets. For our approximate
antialiasing strategy, this information about projected facets is then used as
explained in Section 5.7. For the case of a curved feature, visibility is com-
puted in the same way by locally approximating the feature as a straight one.
For this, we simply need to determine its current tangent direction by com-
puting the closest point on curve to that point with the algorithm described
in [6].

5.3. Evaluating Intersecting Features

1

2

3

Eye/light ray

Intersection

1

2

3

Figure 5: Crossing of two features is considered as the subtraction of the two volumes
from the basic flat surface (left, above). When ray tracing, we compute its spans through
the feature body (right), and we subtract them from the ray path, resulting in the final
intersection point (below).

In the case where more than one feature is present in the same texel,
computations must be performed to determine their actual intersection, if
any. In this section we will explain the case of multiple features (parallel or

12



intersecting), leaving for the next section other cases like intersected ends,
isolated ends, or corners. In order to perform these computations we use a
Constructive Solid Geometry (CSG) analogy, which takes as input the inter-
sections between the ray and each individual feature profile, and combines
them to find the final intersection result. This method is much more elegant,
simpler and faster to compute than the one presented in [17], see Section 5.2.
If we look at Figure 5, we can see an example with two simple intersecting
features. If the features have no protruding parts, we can think that the
features were built by removing material from the base surface. This is like
building the features with Constructive Solid Geometry (CSG), in the sense
that we consider we have a CSG tree: from a flat, solid surface, we subtract
the volume of each of the features in turn, resulting in holes that can be
ray-traced [25].

The first thing to do is to compute the intersections of the ray with each
profile independently of each other, using the algorithm described in the pre-
vious section. In this case, however, we need to compute all the intersection
points, not only the first one. As the profiles are known in advance, the
maximum number of intersections can be pre-computed and used to define
the size of the vectors used in the fragment shader to evaluate the features.
We start evaluating every profile in an iterative process, combining the inter-
sections of the ray with the current profile with the result so far (according
to the CSG operation). This is shown in Algorithm 3.

Algorithm 3 ProcessIntOfFeatures(cursor, features)

1: Get data and profile for first feature
2: Project 1st profile and find all the intersection points → intSegs
3: while there are features to evaluate do
4: Get data and profile for next feature
5: Project next profile and find all intersection points → intSegs’
6: Combine(intSegs, intSegs’) → intSegs
7: end while
8: return firstPoint(intSegs)

But subtracting material is not sufficient if we can have protruding parts.
See Figure 6. In those case, and following our CSG analogy, we can think
about adding (union) the material for peaks, and then subtracting the parts
of the feature that are below the base surface. It is important to mention
that we must subtract not only the part of the feature that is strictly under

13



=

=

(a)

1st

result

2nd

4

3

12

Eye/light ray

1st

2nd

1st

2nd

2

4

1

3
Subtracting segment
Adding segment

(b)

Figure 6: (a) When computing the intersection of features, CSG operations must be
ordered and all additions must be performed before any subtraction. (b) When tracing a
ray, it is partitioned in segments coming from additions (red segments) and subtractions
(green segments). Ray tracing becomes a regular CSG operation.

the base surface, but subtract a whole wedge, from below the surface and
extending above it. See Figure 6(a). Furthermore, all the additions must be
performed before any subtraction to obtain the desired result. In practice,
this can be achieved by taking into account that the intersections of a ray and
a profile are already sorted by the intersection process itself. We simply need
to sequentially classify the ray segments as adding or removing material after
each intersection. Initial segments only need to be classified if intersecting
an internal profile facet, which is done as subtractions to simulate the wedge
described before. See Figure 6. After that, we propose to combine the seg-
ments using a special CSG operation that performs a subtraction when either
segment is subtracting, otherwise it performs an addition. This procedure
is repeated for every groove present in the current texel, subsequently com-
bining their ray segments. At the end, the visible point is the first addition
point found. In our current implementation, the assignment of internal and
external faces is manually done, but it is not difficult to do it automatically
by starting on both extremes and classify every face towards the center as
external, until the normal of the feature face changes its orientation with
respect to the direction of classification.

5.4. Special Geometries

Other situations such as the ones depicted in Figure 7 can be evaluated
in a similar way by considering more CSG operations. Intersected ends,

14



Figure 7: Special situations. From left to right: intersected end, isolated end, and corner.
In the figure, green parts have a priority assigned.

for example, can be seen as a regular intersection between features followed
by two extra CSG operations, in order to recover the added/removed parts
beyond the end (see left image of Figure 7).

When evaluating intersections using our approach of combining ray seg-
ments, note that each segment has a priority related to the order of the
corresponding CSG operation. Hence, material subtractions have priority
over additions because these are performed later. Using the same idea, inter-
sected ends are simulated by simply giving higher priority to the ray segments
belonging to the recovered portion (right side of the feature in Figure 7 left).
During ray-profile intersections, this means that ray segments need to be
classified as additions or subtractions as before, but giving more priority to
the ones intersecting the prioritized side of the profile, if any. During the
ray combination, priorities will be used in the same way, but considering an
extra priority level. Regarding isolated ends (Figure 7 middle), we first need
to consider an extra feature perpendicular to the main one in order to pro-
cess this as an intersection. This feature only uses half the original profile,
and both profiles are prioritized so that we can obtain the desired result. A
similar procedure can be applied for corners, as shown in Figure 7 right.

The different priorities associated to the features are previously stored
in the data texture, as stated in Section 4. During a pre-processing step,
we first determine which special cases are contained in each cell, and then
assign the corresponding priorities to each feature. Since priorities always
affect one side or another of a feature profile, we only need to specify which
side of the feature has priority, i.e. which profile portion needs to be recov-
ered. Priorities can thus be efficiently stored as a single tag along with the

15



feature element data, stating if its profile will have left, right, both-sides or
no priority. In order to handle different situations in the same cell (e.g. a
feature forming a corner and an isolated end after that), we actually store
two priorities for each feature element: one related to the previous feature in
the ordered feature list and another with the next feature (see q1 and q2 in
Figure 3(b)). These priorities will be properly used when combining the ray
segments from two consecutive features.

5.5. Profile Perturbations

With a method like the one presented here it is very easy to perform a
variation of the feature profile along its path by means of a perturbation
function. As explained in Section 4, we left two texture channels for this
purpose. One interesting and flexible way of doing this is to store the values
of a 2D global parameterization of the path into these two entries. This way,
for every feature element, we would know the value of this parameter for
both ends of the segment. For instance, if the path is parameterized in a
way such that the parameter has value 1 in one end and 0 in the other, the
path can be reduced in size from full width to zero along its way, as can bee
seen in the cracks of Figure 8. This variation can also be associated with a
functional expression, like a sinus (top left of Figure 8) or a polynomial one
that could be stored in the texture and then be evaluated in rendering time.

5.6. Shadowing

Once the intersection of the ray and the path-based detail is found, shad-
owing computations are performed. The lighting step of these computations
repeats the previous steps, but this time with respect to the light source
direction. For this, the visible point is first re-projected onto the object
surface according to the light direction. If after repeating the process there
is a blocker, i.e. the illuminated facet is different from the visible one, the
point is in shadow. If not, it is illuminated and the material at that point
is retrieved, the normal is computed from the visible facet coordinates, and
shading is finally computed.

5.7. Approximate Antialiasing

The method presented so far is intended for point-sampling, which gener-
ates aliasing artifacts. In this section we explain how to include an efficient
antialiasing both for the direct visualization and for shadowing. This method

16



Figure 8: Some examples of path-based features rendered with our point sampling ap-
proach. From top left to bottom right: a curved path with a sinusoidal profile variation, a
non-height field profile, a one-sided profile (with a square path), cracks, protruding letters
and complex-profile scratches onto spherical shapes.

works without resorting to A-buffer fragment lists and without extra memory
consumption, at the expense of added computational cost.

In order to compute an anti-aliased version of the shader, the first step
is to determine the footprint of the pixel in texture space, just as done in
anisotropic texture filtering. This footprint, however, may overlap several
texels, which would require the evaluation of the multiple features contained
within. The exact solution for this problem was presented in [17], but their
solution is unfeasible for real-time rendering. We decided to implement an
approximation by evaluating only those texels traversed by the current ray,
as before. However, the intersection with the features is now done by taking
into account the pixel footprint. Each time an intersection is computed, the
footprint is subsequently reduced and the traversal continues until the entire
footprint has been processed, as explained below, and depicted in Figure 9.
As our texels were extended with nearby information (See Section 4.2), in
our experiments this approximation resulted in renderings without noticeable
artifacts for short up to medium distances, and not very grazing angles.

Now, depending on the situation we are in, we take two main approaches
to intersect the footprint with the features. One we call it region-sampling,

17



Pixel Footprint

Reduced Footprint

Ray marching direction

Object
surface

Texel size
Viewing
direction

Visible regions

Figure 9: Pixel content is determined in a front to back order, iteratively visiting each 2D
profile. Each time an intersection is found, the pixel footprint is reduced proportionally
to the covered area and the process continues until the footprint is fully covered.

18



for isolated features, and then supersampling for the case of intersecting
features (Section 5.3) and other special geometries (Section 5.4). Finally, we
also consider the case of mixed situations, where we can see through a pixel
both isolated grooves and, for instance, intersecting features.

• Region-Sampling: As explained in Section 5.2, the simplest case of
an isolated groove can be solved in 2D by means of its profile. The
main difference is that now we need to consider all the visible profile
facets contained in the footprint, not only the one intersecting with
the viewing ray. This will require the evaluation of the different visible
segments, which can be easily accomplished in 1D by projecting the
profile onto the base surface, as done during point sampling (see Section
5.2). Computing an anti-aliased final color for the pixel footprint is
then just a sum over all visible feature segments, weighting the color
computed for each segment by the relative size of the projected segment.
Note that during the shadowing step, the shadowed portions of these
facets should be removed in order to obtain a correct result. Since
storing each previous visible segment for its later shadowing test would
be costly, we decided to only store the points delimiting each visible
profile region (see Figure 9). By reprojecting these points during the
shadowing step, we can then easily determine which facets are both
visible and illuminated for the final color computation. This algorithm
is somehow similar to the line sampling method proposed in [17], but
with this last part being more suitable for a GPU implementation.

• Supersampling: For feature intersections and ends, our CSG method
can not be easily extended with region sampling. In those cases, we
better resort to a supersampling strategy, where the footprint is eval-
uated using different samples and blended by means of a weighting
filter. In order to compute these samples, the texture is only traversed
once, and in case where a texel contains a special case, the samples are
evaluated as the features are decoded. This is acceptable as the grid
texture is computed using extended features, as explained above, and
requires less computations than a full supersampling strategy. In our
examples, we use 4 samples taken halfway between the pixel center and
its corners and average them using a simple box filter, which tends to
give acceptable results. In [17], antialiasing on groove intersections and
ends where analytically evaluated using a polygonal footprint projected
on each feature facet, but this would be clearly unfeasible for the GPU.

19



Figure fps Mem (kb) Texture resolution
1 left 57.7 535 250x250 / 137x137
1 middle 59.5 535 250x250 / 137x137
1 right 78.1 535 250x250 / 137x137
8 top left 245.0 30.6 50x50 / 42x42
8 top middle 56.6 12 25x25 / 24x24
8 top right 156.4 1 2x2 / 8x8
8 bottom left 193.2 64 100x100 / 39x39
8 bottom middle 36.8 50 75x75 / 42x42
8 bottom right 84.4 198 100x100 / 101x101

Table 1: Performance of our method for different figures. Rendering times are in frames
per second and memory in kilobytes. The resolution of the two textures is also included.

• Mixed cases: During a ray traversal, texels laying on the ray’s path
may require the use of region sampling or supersampling according to
the case. If we apply region sampling, the footprint area is proportion-
ally reduced to the ratio of the length of the projected visible regions
to the total footprint length. If we apply supersampling, the footprint
reduction ratio is the number of samples that missed any feature in
the current texel (and continued beyond the current texel) to the total
number of samples. Dealing with mixed cases, however, may become
difficult during the shadowing step, especially when mixing visible re-
gions with points. In those cases, its simpler to consider visible regions
as point samples and evaluate them using supersampling as well. These
cases only happen in some especial situations, and will result in a sim-
ilar quality than the one obtained at intersections and ends. Note that
region sampling is far more accurate and fast than using supersampling,
so whenever is possible, is better to use this technique.

6. Results

Our method has been implemented as a fragment shader using Cg and
the OpenGL API. The rendering times for the images are included in Table 1,
and correspond to the shader running on a GeForce 8800. As can be seen,
this table also includes the memory consumption due to our different textures
as well as their resolution.

In Figure 8 we can see some results of the possibilities that this method
opens: features with curved paths, features with perturbations along their
path (like a sinusoidal variation and a linear one for cracks), one-sided pro-

20



files that allow modelling of depreciations or protruding surfaces, protruding
features like text, and features over curved surfaces.

These images where rendered using our point-sampling method. Observe
that the images show masking and shadowing effects and different special
situations like feature intersections, ends, and corners. Our method allows
the correct rendering of all these effects at real-time frame rates. Further-
more, our textures require a low memory consumption: the grid textures
used in these examples are very small, going from 25x25 to 100x100, and
data textures are even lower. See Table 1.

In Figure 1, an example of a more complex scene is shown, this time ren-
dered using our antialiasing scheme. The engravings in the Knight Champion
armor were generated directly from the displacement map the artist provided
with the model. This was done by vectorizing the image (with Inkscape) and
drawing the segments in texture space for the generation of the textures (with
a Maya plug-in). The obtained textures require a higher resolution due to
the complexity of the pattern (see Table 1). This, however, should be com-
pared with the requirements of relief mapping [3], which required textures of
20482 to properly represent this kind of features. Even with highly detailed
textures, note that such kind of sharp detail can not be correctly simulated
without using a feature-based approach like the one presented here (see mid
and close images in Figure 1).

This can also be seen in the Sponza Atrium scene of Figure 10. In this
case, we compared different antialiasing options fot both our method and re-
lief mapping. Observe how the mip-mapping scheme of relief mapping erases
the details for medium distances, which is also clearly visible in Figure 1.
Also observe the quality of our method with and without applying antialias-
ing. Our antialiasing scheme requires more computations but the results are
clearly better. Using point sampling everywhere instead of region sampling,
the quality would be worst and the framerate would be lower (17.24 fps with
4 samples per pixel). In Figure 11 we can see the Spoza Atrium scene with
n = 1, 2 and 4 samples per pixel. With supersampling, the frame-rate de-
creases with the number of samples, as the computation has a cost that scales
as O(n), being n the number of samples used. It must be mentioned, how-
ever, that it is performed entirely on local data, and is therefore amenable to
additional parallelism. With region sampling, supersampling is only required
at intersections and ends, thus improving the general performance.

In Figure 12, our method is also compared against both an explicit geo-
metric representation of the features and xNormal’s instanced tessellation im-

21



Figure 10: Comparison of techniques for the Sponza Atrium: from left to right, relief
mapping (resolution=10242, 51.8 fps), relief mapping with 4× Full Screen Anti-Aliasing
(5122, 33.1 fps), 1 sample (5122, 64.3 fps) and our approximate antialiasing scheme (5122,
33.6 fps).

Figure 11: Antialiasing at the Sponza Atrium scene: from left to right, 1 sample (65.3
fps), 2 samples (29.0 fps) and 4 samples per pixel (15.9 fps) respectively.

22



Figure 12: Comparison between geometry (left, 49/50 fps), instanced tessellation (second
column, 60/57 fps), relief mapping (RM) (third column, 181/599 fps) and our method
(right, 198/315 fps). RM uses a 512x512 texture. Geometry: 698107 triangles (Maya
feature-based displacement mapping), tessellation in the geometry shader (second column).
The other two: 14948 triangles. Timings in parenthesis are for the far and the close images,
respectively.

plementation [26]. Observe the quality and good performance of our method
in comparison with the other approaches, specially because of the sparseness
of the features represented. Geometric representations greatly depend on the
quality and subdivision of the original model. Furthermore, the number of
triangles tend to rapidly grow, especially for curved features or surfaces. Re-
lief mapping-based techniques, in general, tend to be faster for representing
surface detail than our method, but our method is able to represent such
detail much more accurately and at a fraction of the storage cost, while
maintaining reasonable frame-rates. Finally, in Figure 13, we can see that
our method provides similar results to those presented in [17], but at a much
higher frame-rate: the method presented here is more than 1500 times faster
than the original one. The most notorious visual differences are at intersec-
tions and other isolated cases, but the differences are negligible when taking
into account the frame-rates. Also, the detail is preserved even with a low
resolution texture, so the memory cost remains small.

23



Figure 13: Comparison between the method proposed in [17], at 0.03 fps (right) and our
method running at 47 fps (left). We can see that the proposed method outperforms the
original one with similar quality results.

7. Discussion and Limitations

As seen above, the complexity for evaluating each grid texel depends lin-
early on the number of features crossing that texel, so complexity can be ar-
bitrary and it is possible to control to introduce it only where strictly needed.
Also, the time needed by each fragment shader depends on this number of
features, so empty texels are really quick to evaluate. As in [17], isolated
features are faster to evaluate than multiple cases with feature intersections
or ends, but the latter tend to be very localized in most common patterns.
Our approaches, however, are faster to evaluate and may be applied to any
feature represented by a CSG tree.

The anti-aliasing strategy described in Section 5.7 relies on simplification
assumptions that may break down when the full pixel footprint grows larger
than a few texels. The ideal solution would be, then, to resort to some sort
of mipmapping strategy. Unfortunately, and to the best of our knowledge,
up to now there is no closed solution for the problem of filtering with local
occlusion, shadowing and masking [27]. Research in this problem clearly is
beyond the scope of this paper. Nevertheless, it is possible to switch to some
sort of normal or BRDF distributions and use the solutions presented in [27]
and [28], or a solution based on an anisotropic model [29], although these
solutions would ignore occlusions and thus would result in an unrealistic
result. The same would happen if we switch to a Relief Mapping solution
and use the mipmapping approach described in [3].

24



It is important to analyze the influence of the grid size in the requirements
and performance of this method. The resolution of the grid texture only
determines our efficiency when finding if the current point contains a feature
or not: the less features are contained in the texels, the faster becomes the
shader. Texture resolution depends on the resolution of the grid, the number
of features and on the pattern or properties of the features. As expected,
as the grid increases resolution, the lists of features for each texel will get
shorter in average, but at an increased total memory cost. For certain texels,
however, this length has a lower bound, as a texel of any size that covers the
intersection of, let’s say, 4 features, will have (at least) a length of 4 entries.
Although reducing list average length means fewer evaluations at each texel,
the increase in grid resolution also implies more texels to evaluate in the
search (specially for more grazing angles), and this behavior dominates over
the reduction in list sizes for large grid resolutions. On the other extreme,
a low resolution grid means many features to be verified at each texel, thus
also lowering performance. Obviously, there is an equilibrium point that
maximizes performance, as can be seen in Figure 14. As we mentioned
earlier, this equilibrium point is when the grid size is similar to the sizes
of the represented features.

One important limitation to mention is that the textures used by our
method need to be precomputed, which greatly difficults edition or anima-
tion of the features or their properties. Thus, it is clear that having animated
features would be almost impossible without changing dynamically both tex-
tures, but this limitation is common to vector-based representations [6].

From Figure 8 (middle and right in the bottom row) we can see that our
algorithm behaves correctly in the case where the object surface is not flat,
by simple tracking an approximate curvature along the ray, as described by
[20]. Other solutions like taking into account the stretching introduced by
the parameterizations, as done in [24], could also be used.

8. Conclusions

In this paper we have presented a method to compute path-based features
that can model many different surface details. We have successfully gener-
ated several patterns, including non-height field patterns, bricks, cracks, flat
depreciations and patterns with perturbations along their path lengths. The
method can be successfully applied even onto curved surfaces. Also, it has
efficient antialiasing, and does not present extra memory consumption. Even

25



0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600 700

Resolution

FP
S

0

500

1000

1500

2000

2500

3000

M
em

or
y 

(k
b)

FPS (no shadows) FPS (0º) FPS (60º) FPS (84º) Memory

Figure 14: Memory requirements (in kilobytes) and framerate (in frames per second) as a
function of grid resolution for different angles for the top left image in figure 8.

26



with many samples, framerates remain interactive. We can conclude that the
method is both robust and accurate, providing surface detail with a quality
only possible with geometry but without its overhead. In addition, it behaves
much better in terms of quality than other techniques like Relief Mapping.

9. Acknowledgements

Sponza Atrium is courtesy of Marko Dabrovic, Knight Champion model
by DAZ 3D (www.daz3d.com). This work was funded with grant TIN2007-
67120 from the Ministerio de Educación y Ciencia, Spain.

References

References

[1] J. F. Blinn, Simulation of wrinkled surfaces, in: Computer Graphics
(Proceedings of SIGGRAPH 78), Vol. 12, 1978, pp. 286–292.

[2] L. Wang, X. Wang, X. Tong, S. Lin, S. Hu, B. Guo, H.-Y.
Shum, View-dependent displacement mapping, ACM Transactions
on Graphics 22 (3) (2003) 334–339.

[3] F. Policarpo, M. M. Oliveira, J. L. D. Comba, Real-time relief map-
ping on arbitrary polygonal surfaces, in: Proceedings of the 2005
Symposium on Interactive 3D Graphics and Games, 2005, pp. 155–
162.

[4] N. Tatarchuk, Dynamic parallax occlusion mapping with approxi-
mate soft shadows, in: SI3D ’06: Proceedings of the 2006 sympo-
sium on Interactive 3D graphics and games, 2006, pp. 63–69.

[5] Z. Qin, M. D. McCool, C. Kaplan, Precise vector textures for real-
time 3d rendering, in: SI3D ’08: Proceedings of the 2008 sympo-
sium on Interactive 3D graphics and games, 2008, pp. 199–206.

[6] D. Nehab, H. Hoppe., Random-access rendering of general vector
graphics, ACM Transactions on Graphics (2008)

[7] E. Parilov, I. Rosenberg, D. Zorin, Real-time rendering of nor-
mal maps with discontinuities, Technical Report TR2005-872, NYU
(2005).

27



[8] T. Kaneko, T. Takahei, M. Inami, N. Kawakami, Y. Yanagida,
T. Maeda, S. Tachi, Detailed shape representation with parallax
mapping, in: In Proceedings of the ICAT 2001, 2001, pp. 205–208.

[9] L. Szirmay-Kalos, T. Umenhoffer, Displacement mapping on the
gpu - state of the art, Comput. Graph. Forum 27 (1).

[10] C. Loop, J. Blinn, Resolution independent curve rendering us-
ing programmable graphics hardware, ACM Trans. Graph. 24 (3)
(2005) 1000–1009.

[11] P. Sen, Silhouette maps for improved texture magnifica-
tion, in: HWWS ’04: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
2004, pp. 65–73.

[12] J. Tumblin, P. Choudhury, Bixels: Picture samples with sharp em-
bedded boundaries, in: Rendering Techniques 2004: 15th Euro-
graphics Workshop on Rendering, 2004, pp. 255–264.

[13] S. Lefebvre, H. Hoppe, Perfect spatial hashing, in: SIGGRAPH ’06:
ACM SIGGRAPH 2006 Papers, 2006, pp. 579–588.

[14] M. Tarini, P. Cignoni, Pinchmaps: textures with customizable dis-
continuities, Comput. Graph. Forum 24 (3) (2005) 557–568.

[15] S. Mérillou, J.-M. Dischler, D. Ghazanfarpour, Surface scratches:
Measuring, modeling and rendering, The Visual Computer 17 (1)
(2001) 30–45.

[16] C. Bosch, X. Pueyo, S. Mérillou, D. Ghazanfarpour, A physically-
based model for rendering realistic scratches, Computer Graphics
Forum 23 (3) (2004) 361–370.

[17] C. Bosch, X. Pueyo, S. Mérillou, D. Ghazanfarpour, A resolution
independent approach for the accurate rendering of grooved sur-
faces, Computer Graphics Forum (Pacific Graphics 2008) 27 (7).

[18] S. D. Porumbescu, B. Budge, L. Feng, K. I. Joy, Shell maps, ACM
Trans. Graph. 24 (3) (2005) 626–633.

28



[19] S. Jeschke, S. Mantler, M. Wimmer, Interactive smooth and curved
shell mapping, in: Rendering Techniques 2007 (Proceedings Euro-
graphics Symposium on Rendering), 2007, pp. 351–360.

[20] M. M. Oliveira, F. Policarpo, An efficient representation for surface
details, in: UFRGS Technical Report RP-351, 2005.

[21] F. González, G. Patow, Continuity mapping for multi-chart tex-
tures, ACM Transactions on Graphics 28 (5) (2009) 109.

[22] C. Everitt, Interactive order-independent transparency, white pa-
per, NVIDIA Corporation (1999).

[23] M. F. A. Schroders, R. v. Gulik, Quadtree relief mapping, in: GH
’06: Proceedings of the 21st ACM SIGGRAPH/Eurographics sym-
posium on Graphics hardware, 2006, pp. 61–66.

[24] Y.-C. Chen, C.-F. Chang, A prism-free method for silhouette ren-
dering in inverse displacement mapping, Comput. Graph. Forum
27 (7) (2008) 1929–1936.

[25] J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes, Computer
Graphics: Principles and Practice, 2nd Edition, Addison-Wesley,
1990.

[26] S. Orgaz, xnormal, http://www.xnormal.net/ (2007).

[27] C. Han, B. Sun, R. Ramamoorthi, E. Grinspun, Frequency domain
normal map filtering, in: SIGGRAPH ’07: ACM SIGGRAPH 2007
papers, 2007, p. 28.

[28] R. B. Van Horn III, G. Turk, Antialiasing procedural shaders with
reduction maps, IEEE Transactions on Visualization and Computer
Graphics 14 (3) (2008) 539–550.

[29] J. Kautz, H.-P. Seidel, Towards interactive bump mapping with
anisotropic shift-variant BRDFs, in: 2000 SIGGRAPH / Euro-
graphics Workshop on Graphics Hardware, 2000, pp. 51–58.

29


