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Abstract: Taking account of the compositional nature of proportions, the logistic
function is the natural transformation to apply when analyzing and modelling
time series of continuous proportions. From the metric structure on the simplex,
an isomorphic structure is defined on the set of continuous proportions. This
structure permits the translation of the standard analysis of univariate time series
to the compositional analysis of proportions in which the logistic transformation
arises naturally and not as a mere alternative to the transformation of the data.

Keywords: Compositional data; log odds ratio; logistic transformation; simplex;
time series of proportions.

1 Introduction

Univariate time series (TS) of proportions, pt, arise in a wide variety of
applications. Authors often ignore the restricted range of variation of the
pt, namely (0, 1), and use standard techniques to model TS of proportions
(e.g., Box and Jenkins, 1976; Tiller, 1992). Such analyses can result in
estimates of proportions erroneously lying outside the interval (0, 1).
Wallis (1987) was the first author to propose the logistic transformation
yt = logit pt = log (pt/(1− pt)) as an appropriate transformation for TS of
proportions. The arguments given by him for the use of the logit transfor-
mation are: i) the necessity to stabilize the variance and make the trans-
formed data approximately normally distributed, and ii) to ensure that
estimates and projections lie within (0, 1). Other authors use the loga-
rithmic transformation as an alternative transformation to model TS of
proportions because it can be useful as a means of stabilizing the variance
and normalizing transformed data. However, it is not a guarantee that esti-
mates and projections will lie in (0, 1). It would appear then that the anal-
ysis and modelling of TS of proportions simply requires, if really necessary,
the identification of the appropriate transformation in each case. However,
in our opinion, this transformation based approach ignores the composi-
tional nature of proportions. Any proportion pt inevitably has associated
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with it the complementary proportion 1− pt, and thus the modelling of a
TS of proportions pt should be based upon the time series of compositions
pt = (pt, 1− pt)′ in the simplex S2.
This paper presents the compositional approach to the modelling of TS of
proportions based on the initial work of Barceló-Vidal et al. (2007) which
uses the compositional data analysis methodology introduced by Aitchison
(1986) and subsequently developed by Egozcue et al. (2006). In Section 2
we present the Euclidean vector space (P,⊕,¯) of proportions in (0, 1) in
correspondence with the simplex (S2,⊕, ¯). The algebraic structure of P
serves as the basis of the development, in Section 3, of the compositional
approach to the analysis of TS of proportions and to introduce the compo-
sitional ARIMA models. There it is shown that the logit transformation
is the natural transformation which should be applied when attempting to
analyze or model TS of proportions as it is the one that takes into account
their compositional nature.

2 Continuous proportions as a compositional space

2.1 The metric space of continuous proportions

Let P be the set of continuous proportions p ∈ (0, 1). We identify a pro-
portion p with the 2-part p = (p, 1− p)′ ∈ S2 and therefore we can easily
translate to P the structure defined in (S2,⊕,¯). The perturbation of p
and p∗ in P will be denoted as

p⊕ p∗ =
pp∗

pp∗ + (1− p)(1− p∗)
=

odds p× odds p∗

1 + odds p× odds p∗
,

where odds p = p
1−p . The proportion 1/2 is the neutral element of the group

(P,⊕), the inverse of p in (P,⊕) is

odds p

1 + odds p
,

and the compositional difference between p, p∗ ∈ (0, 1) will be given by

pª p∗ =
p
p∗

p
p∗ + 1−p

1−p∗
=

odds p
odds p∗

1 + odds p
odds p∗

.

The power transformation of p ∈ (0, 1) and α ∈ IR will be defined by

α¯ p =
pα

pα + (1− p)α
=

(odds p)α

1 + (odds p)α
.

In this manner, (P,⊕,¯) becomes a one-dimensional real vector space. It
is important to note that the algebraic structure of P is based on the odds
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of the proportions and thus not only takes into account of p but also its
complement 1− p.
The additive logratio transformation (alr) on S2 corresponds to the logit
transformation on P, and the centered (or symmetric) logratio transfor-
mation (clr) corresponds to the 1

2 logit transformation on P. As they are
linear transformations from the vector space (P,⊕,¯) to IR it holds that

logit ((α¯ p) ⊕ (α∗ ¯ p∗)) = α logit p + α∗ logit p∗,

logit−1 (α y + α∗ y∗) = (α¯ logit−1y) ⊕ (α∗ ¯ logit−1y∗),

for any p, p∗ ∈ P, and any α, α∗, y, y∗ ∈ IR. Recall that the inverse of the
logistic transformation can be expressed as logit−1y = exp y/ (1 + exp y) .
It also holds that

odds ((α¯ p) ⊕ (α∗ ¯ p∗)) = (odds p)α × (odds p∗)α∗.

The C-norm of a proportion p ∈ (0, 1) is given by

‖p‖C =
1√
2
|logit p| ,

and the C-distance between two proportions p and p∗ in (0, 1) by

dC(p, p∗) = ‖pª p∗‖C =
1√
2
|logit p− logit p∗| .

The C-norm converts the vector space (P,⊕,¯) into a metric space, and
the 1

2 logit transformation can be viewed as an isometry between P and IR.

2.2 Compositional random continuous proportions

If p is a random continuous proportion in (0, 1), the compositional expected
value (C-mean) of p will be given by

EC{p} = logit−1 (E {logit p}) .

In agreement with the concept of variance of a random variable and the C-
distance between two proportions, the compositional variance (C-variance)
of p will be defined as

varC{p} = E
{
d2
C (p,EC{p})

}
= E

{
1
2

(logit p− logit EC{p})2
}

,

and, therefore, varC{p} = 1
2var {logit p}.

Similarly, if (p, p∗) is a bivariate random proportion defined in (0, 1) ×
(0, 1), the compositional covariance (C-covariance) and the compositional
correlation (C-correlation) of p and p∗ will be defined as

covC{p, p∗} = 1
2cov {logit p, logit p∗} ,

corrC{p, p∗} = corr {logit p, logit p∗} .
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The C-mean and C-variance of a random proportion p in (0, 1) are compat-
ible with the algebraic structure of (P,⊕,¯) by which it holds that:

(i) EC{p⊕ p∗} = EC{p} ⊕ EC{p∗};
(ii) EC{α¯ p} = α¯ EC{p};
(iii) varC{p⊕ p∗} = varC{p}+ varC{p∗}+ 2 covC{p, p∗};
(iv) varC{α¯ p} = α varC{p},

for any p, p∗ ∈ P and any α ∈ IR.
Finally, the compositional normality of a random continuous proportion,
p, will be associated with the normality of logit p. Therefore, we will say
that p is C-normally distributed if logit p is normally distributed.
It would thus appear obvious that the compositional structure of the ran-
dom continuous proportion p is based on that of the transformed proportion
logit p and that the latter is compatible with the algebraic structure of P
defined by the operators ⊕ and ¯.

3 Compositional approach to time series of
proportions

From a compositional point of view, the time series analysis of continuous
proportions pt is based on the standard analysis of the series logit pt and
the fact that the algebraic operators on P that are compatible with this
compositional approach are the perturbation operator ⊕ and the power
transformation operator ¯, instead of the sum and multiplication by a
scalar within in IR.

3.1 Some definitions

Let pt, t = 0,±1,±2, . . . be a random process of continuous proportions in
(0, 1). According to the compositional approach we define the C-mean and
the C-variance of the process at time t as

µ̃t = EC{pt} = logit−1 (E{logit pt}) ; σ̃2
t = varC{pt} = 1

2var{logit pt}.

Similarly, the C-covariance and C-correlation between pt1 and pt2 as

γ̃t1,t2 = covC{pt1 , pt2} = 1
2cov{logit pt1 , logit pt2},

%̃t1,t2 = %C{pt1 , pt2} = %{logit pt1 , logit pt2}.
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3.2 C-stationarity and C-white noise

A process of proportions pt is called (weakly) C-stationary if the following
conditions are satisfied for all values of t:

EC{pt} = µ̃ = constant; covC{pt, pt+τ} = γ̃(τ), τ = 0,±1,±2, . . .

From a compositional perspective, a random process of proportions pt is
considered to be C-white noise if

EC{pt} = 1/2, varC{pt} = σ̃2 and covC{pt, pt+τ} = 0,

for t = 0,±1,±2, . . ., and τ = ±1,±2, . . . Equivalently logit pt should be
white noise in the usual sense of the term, with variance 2σ̃2. We use
the symbol εt to denote C-white noise and represent by σ̃2

ε the constant
C-variance of εt. If εt is C-normally distributed, using the well known prop-
erties of the lognormal distribution, it is easy to prove that

E{odds εt} = exp
(
σ̃2

ε

)
; var{odds εt} =

(
exp(2σ̃2

ε )− 1
)
exp(2σ̃2

ε ).

3.3 The C-difference operator

The C-first difference operator ∇C is given by

∇Cpt = pt ª pt−1 = (1− LC)pt,

where LC is the usual backshift operator. When the operator LC is applied
to a time series of proportions in a compositional context we have to take
account of the algebraic structure of (P,⊕,¯). Thus, for example,

(1− 2LC + L2
C)pt = pt ª (2¯ pt−1)⊕ pt−2.

3.4 The C-ARIMA model of proportions

A process of continuous proportions pt, t = 0,±1,±2, . . ., is a C-ARMA(p, q)
process if for every t,

pt = (φ1¯pt−1)⊕ . . .⊕(φp¯pt−p)⊕εtª(θ1 ¯ εt−1)ª . . .ª(θq ¯ εt−q) , (1)

where εt is C-white noise C-normally distributed with C-variance σ̃2
ε . This

equation can be written symbolically in the more compact form

φ(LC)(pt) = θ(LC)εt, t = 0,±1,±2, . . . ,

where φ and θ are pth and qth degree polynomials in the LC operator

φ(LC) = 1− φ1LC − . . .− φpL
p
C ; θ(LC) = 1− θ1LC − . . .− θqL

q
C .
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Finally, a process of continuous proportions pt is a C-ARIMA(p, d, q) pro-
cess if (1 − LC)dpt is a C-ARMA(p, q) process. It is clear that pt is a C-
ARIMA(p, d, q) process if and only if logit pt is a ARIMA(p, d, q) process.
Therefore, in practice, the estimation of the parameters of a C-ARIMA(p, d, q)
process pt reduces to the estimation of the parameters of the the trans-
formed logit pt process. C-ARIMA(p, d, q) models can be represented in
logit or odds formats. Thus, for example, equation (1) of a C-ARMA(p, q)
model can be expreseed in logit format as

logit pt = φ1logit pt−1 + . . . + φplogit pt−p

+logit εt − θ1logit εt−1 − . . .− θqlogit εt−q,

where logit εt ∼ N(0, 2σ̃2
ε ); and in odds format as

odds pt = (odds pt−1)
φ1×. . .×(odds pt−p)

φp×ωt×(ωt−1)
−θ1×. . .×(ωt−q)

−θq ,

where ωt is log-normally distributed, i.e., ωt ∼ Λ(0, 2σ̃2
ε ).
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