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Reply to Letter to the Editor by S. Rehder and U. Zier on ‘Logratio

analysis and compositional distance’   by J. Aitchison, C. Barceló-Vidal,

J. A. Martín-Fernández and V. Pawlowsky-Glahn

The main thrust of the letter from Rehder and Zier seems to be that they are

unconvinced that the ‘measure of compositional distance’ between two D-part

compositions x and X, defined by Aitchison (1983; 1986, p.193) as
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where g(⋅) is the geometric mean, is a metric in the usual mathematical meaning within

the algebraic-geometric structure of the d-dimensional unit simplex

Sd = { (x
1
 , . . . , x

D

 ): x
i
>0  (i = 1, . . . , D) ,  x

1
 + . . . + x

D
 = 1}

where d = D – 1. Clearly a first goal in responding to this lack of conviction is to spell

out again in detail the nature of the simplex sample space as used in compositional data

analysis and how the metric arises.

The algebraic-geometric vector space structure of the unit simplex.  The

fundamental operations of change in the simplex are those of perturbation and power

transformation motivated and spelt out by Aitchison (1986, pp. 42 and 120). In their

simplest forms these can be defined as follows. Given any two D-part compositions



2

x, y ∈ Sd their  perturbation is

where C is the well known closure operation; and given a D-part composition x ∈ Sd

and a real number a the power transformed composition is

Note that we have used the operator symbols ⊕ and ⊗ to emphasize the analogy with

the operations of translation and scalar multiplication of vectors in Rd. It is trivial to

establish that these operations define a vector or linear space structure on Sd.

The unit simplex as a metric vector space.  We shall not spell out all the trivial proofs

which establish that ∆S (x, y) as already defined is a metric on Sd  in the standard

mathematical sense. We simply note, for example, the power transformation property

(the analogue of the scalar multiple property of Euclidean distance in Rd ):

  ∆S (a ⊗ x, a ⊗ y) = a ∆S (x, y)

which seems to have been the main property that has eluded Rehder and Zier. The other

metric requirements, that ∆S (x, y) ≥ 0, = 0 if and only if x = y, ∆S (x, y) = ∆S (y, x),

∆S (x, z) + ∆S (z, y) ≥ ∆S (x, y) are simply established.

The fact that this metric has also desirable properties relevant and indeed

logically necessary, such as scale, permutation and perturbation invariance and

subcompositional dominance, for meaningful statistical analysis of compositional data
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has already been spelt in detail, for example in Aitchison (1992) and will not be

repeated here.

The unit simplex beyond its metric vector space structure.  It is possible to go to

even more mathematical sophistication for the unit simplex if either theoretical or

practical requirements demand it. For example the norm || x || and inner product

�x,y� consistent with the metric ∆S  and sought by Rehder and Zier (2001) are simply

provided by

where e is the identity perturbation (1, . . . , 1)/D ; and

Further, it is easy to show that the unit simplex with all this structure is essentially a d-

dimensional Hilbert space with all the mathematical properties and facilities associated

with such a space. In particular, it assures us of the existence of an isometry between Sd

and Rd (Berberian, 1961). Such an isometry is, for example, the clr transformation,

which is defined between the simplex and the hyperplane V of RD, orthogonal to the unit

vector (1,…,1) and which goes through the origin. This hyperplane is a d-dimensional
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subspace of RD and it is easy to see that the clr transformation is an isometry between Sd

and V, as it is an isomorphism and the scalar product in Sd is by definition exactly the

same as the scalar product in RD constrained to clr-transformed compositions.

An interesting aspect of these extensions is that an inner product �b, x� can be

expressed as

where ai = bi /log(b)  (i = 1, . . . , D)  and so a1 + . . . + aD  = 0; thus inner products play

the role of logcontrasts, well established as the compositional ‘linear combinations’

required in many forms of compositional data analysis such as principal component

analysis and investigation of subcompositions as concomitant or explanatory vectors

(Aitchison and Bacon-Shone, 1984; Aitchison, 1986, Chapters 8 and 12).

On subcompositional dominance.  Rehder and Zier seem to doubt the good sense of

expecting a metric used for practical purposes to display subcompositional dominance.

A scientist working with a full vector of measurements in Rd would be surprised to find

that the use of a recommended metric produced a smaller scalar measure of difference

between two vectors than another scientist comparing subvectors of these full vectors;

and, of course, the Euclidean metric in Rd possesses such a property. Just consider a

simple example such as two vectors x = (x1, x2) and y = (y1, y2) in real space. Everybody

would be surprised if Euclidean distance in R2 between x and y was smaller than

Euclidean distance in R1 between x1 and y1 or between x2 and y2. Since subcompositions

are essentially the ‘marginals’ of compositional vectors we clearly expect a similar

property of a compositional metric. A geologist with information only on the (MgO,
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CaO, FeO) subcompositions derived from 10-part major oxides of limestone surely

cannot see more variability then the scientist in possession of the full vectors.

The history of the compositional metric.  The history of the metric may shed some

light on the origins of some of the confusions that have arisen. Aitchison’s (1983; 1986,

p.193) original purpose in suggesting ∆S as a suitable measure of compositional distance

was to provide a measure which conformed with measures of variability derived from

the usual covariance matrix approach, similar to the relationship for Rd between the sum

of squared Euclidean distances between all pairs of data vectors and the trace of the

estimated covariance matrix. For a N x D compositional data matrix X total variability

as measured by the trace of the centered logratio covariance matrix is equal to

so the metric ∆S  provides a similar conformity of intra- and inter-compositional

measures of variability, a clearly desirable property. The attempt to further justify the

metric arose from the argument in a series of letters (Aitchison 1989, 1990, 1991, 1992;

Watson 1990, 1991; Watson and Philip 1989) over the claim by Watson and Philip that

their ‘angular measure’ of difference between two D-part compositions, defined as rays

in R+
D, is the unique such measure. It is the fact that the reasoning used in Aitchison

(1992) necessarily used the Watson and Philip perfectly valid sample space of rays in

the positive orthant R+
D and recognized compositions as equivalence or compositional

classes that seems to have introduced confusion. For example, they do not recognize

that criterion C2 of Aitchison (1992) has nothing to do with a metric scale invariance

axiom, but is merely saying that any distance measure between two compositional
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classes should not depend on which compositions within the class are used as

representatives of the class. The metric property that Rehder and Zier are seeking has

been discussed above. It is important to make the distinction between arguments

relating to the ray space approach and the unit simplex approach in defining what are

necessary requirements of a compositional metric. Both lead by motivated arguments to

valid conclusions that our compositional metric is specially suited to compositional

problems.

The Euclidean distance as a compositional metric.  In our view the Euclidean metric

is completely unsuited to work in the simplex sample space (Martín-Fernández et al.,

1998). The principal reason for this is that it does not match the algebraic-geometric

structure of the simplex space in that it has no simple perturbation or power

transformation properties. In particular it is not suited to subcompositional analyses; it

does not satisfy the subcompositional dominance requirement.

Non-metric measures of difference.  There seems to be an implication in the early part

of Rehder and Zier’s letter that there are useful non-metric measures of difference used

in statistical analysis. We entirely agree and some of us have used such measures

extensively in our work as, for example, in the use of the non-metric Kullback-Leibler

directed divergence between two probability distributions (Aitchison, 1981) or between

compositional data (Martin, 1998; Martín-Fernández et al., 1999). Our advocacy of the

compositional metric is that it is perturbation and power friendly and conforms to

established intra-compositional variability methodology.
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The logratio transformation approach.  The purpose of Aitchison (1982, 1986) as

expositions on compositional data analysis was to attempt to convince statisticians that

there was a valid methodology associated with simplex sample spaces. With the long-

established success of transformation techniques, from the original McAlister’s (1879)

logarithmic transformation, through square-root, arcsin and other transformations in

analysis of variance, through the more general normalizing and variance stabilizing

Box-Cox transformations to those involved in the massive application of generalized

linear models, it seemed natural to present the methodology in terms of such a

transformation, from a simplex to a real space, and with the knowledge that there were

available a whole gamut of standard multivariate methods and software for real vectors.

In this context Rehder and Zier’s disparagement of Aitchison’s recipe for success, or

summary of his methodology: ‘Transform your compositional data into compatible

logratios’, seems to overlook the detailed analysis in Aitchison (1986) and subsequent

publications. For example, it must be clear to any impartial reader that Aitchison (1986)

was fully aware of difficulties that might arise from the use of the asymmetric logratio

transformation alr. For example, in Chapters 5 and 8 he is meticulous in ensuring that

his methods involving alr transformations are permutation invariant. Readers of these

arguments would realize that the ‘neutralizing’ matrix H is introduced to ensure this

invariance. It seems to us remarkable that, with the compositional metric ∆S as already

defined and its alr counterpart defined by

Rehder and Zier persist in using an incorrect measure   
,)}()({)}()({),( 12 TyalrxalrHyalrxalryx −−=∆ −
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in their misplaced criticism of the correct metric.

In their remarks on the logarithmic transformation and lognormal distributions

Zier and Rehder seem to be questioning the use of transformation techniques in general

in statistical analysis, and by implication have a view that statisticians involved in such

practice are naïve. To imply that a statistician transforming positive data logarithmically

to R1 and using normal distribution analysis will arrive at different statistical inferences

from one staying in R+
1 and using lognormal distribution analysis shows a lack of

understanding of current and past statistical practice. Indeed they seem to be unaware of

the huge literature, both theoretical and practical, on this subject over the last century.

For the logarithmic transformation and the lognormal transformation their warning that

log(E(X)) ≠ Ε(log(X)) was recognized and resolved over a century ago by Galton

(1879) and McAlister (1879) in their advocacy of the geometric mean as a ‘measure of

central tendency’ for positive and positively skewed measurements. More recently

concentration on the concept of link functions in generalized linear modeling addresses

the same problem. The argument turns on what are such sensible ‘measures of central

tendency’ for strange sample spaces. For compositional analysis the center

fulfils this purpose, and has a property analogous to that of the vector mean in real

space: ξ minimizes E (∆S (x, ξ)). Stay in the simplex and compute cen(x) or transform

logratio-wise, to Rd , compute the standard mean vector and inverse transform back to

the simplex and you are in agreement.

Tyalrxalryalrxalr )}()()}{()({ −−
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The stay-in-the-simplex approach.  In some respects in the development of our

statistical methodology for compositional data analysis we wish we had avoided the

transformation approach and remained solidly in the simplex with all our arguments. N.

I. Fisher , in the discussion of Aitchison (1982), made the comment that ‘one is

ultimately better off working within the confines of the original geometry [of the sample

space] and with techniques particular thereto.’ For compositional data analysis this is

readily achieved and we are currently presenting and working on research to achieve

this. A simple example may suffice to give the flavor of such an approach. The singular

value decomposition, which is at the heart of any multivariate analysis, takes the

following form. Any N x D compositional data matrix X with nth row composition xn

can be decomposed in a perturbation-power form as follows

where ξ is the center of the data set, the s’s  are positive ‘singular values’ in descending

order of magnitude, the β’s are compositions, R is a readily defined rank of the

compositional data set and the u’s are power components specific to each composition.

This decomposition is intimately connected with logcontrast principal component

analysis, questions of the dimensionality of the data set, compositional biplots,

differential perturbation processes (Aitchison and Thomas, 1998), and to compositional

regression analysis. It is clear that while mathematically sophisticated scientists may

find such an approach attractive, it may be some time before the mathematical training

of scientists makes such concepts attractive to the less numerate.

Convex mixture models.  Rehder and Zier claim that ‘most of the processes like

mixing in the original space are linear.’ We can find no evidence for this statement. If

)(...)( 111 RRnRnn susux ββξ ⊗⊕⊕⊗⊕=
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conservation of mass is induced in support of this, we would be forced to ask the

question in what way can compositional data ever support a conservation-of-mass

hypothesis: compositions carry no information about mass. The process producing the

compositional data could be otherwise, for example metamorphic, metasomatic,

weathering, in which case the differential perturbation model may be more instructive in

determining the nature of the process. We are happy to accept that compositions can be

analyzed within models which assume conservation of mass and indeed have done so

ourselves, for example in the analysis of pollution sources through the study of convex

linear combinations of compositions in Aitchison and Bacon-Shone (1999).

The additive nature of such modeling does not mean that basic principles of

compositional data analysis are thereby neglected.  For example our approach to the so-

called endmember problem where a set of say C endmember compositions β1 , . . . , βC

is sought such that each composition xn
  (n = 1, . . . , N) of the data set can be expressed

as a convex linear combination ξn of β1 , . . . , βC , uses as criterion of success the

magnitude of

while monitoring the magnitude of

Algorithms for such a process are now readily available and, for example, provide a

criterion which could be compared with the fit of a differential perturbation process in

assessing whether a mixture or perturbation process is more realistic to explain the

compositional variability.
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Scale invariance.  It is unfortunate that the words scale and scalar enter into this

discussion with three different meanings, in the compositional scale invariance

argument that leads to the advocacy of compositional analysis in terms of ratios, in

terms of a desirable property of compositional equivalence classes and in one of the

axioms in the mathematical definition of a metric. We apologize for any confusion that

we have caused in this overuse of the terms and would encourage any introduction of

terminology, which removes this confusion. As far as its compositional meaning is

concerned we hold fast to ensuring that a, possibly the, safe way to ensure sensible

interpretation of compositional variability is to express compositional problems in terms

of ratios of components. In our view a problem is compositional if and only if it can be

expressed in terms of such ratios. In other words, the problem does not arise, as Rehder

and Zier imply, from the compositional scale invariance criterion; it is resolved by the

scale invariance criterion.

Granulometric data as compositional data and histograms.  Granulometric data

obtained by sieving techniques are not histograms, as commonly defined, but are weight

(or volume) ×××× diameter profiles. Mathematically they are third moment distributions of

the basic grain diameter distribution, a fact apparently first noted by Hatch (1933); see

also Aitchison and Brown (1956) for further details and its relation to the Kolmogorov

(1941) breakage model. Thus it could be argued that fitting a probability distribution to

such an object is every bit as weird as considering the profile as a composition. Indeed

to move from a weight ×××× diameter profile to a diameter histogram is nothing more than

a perturbation operation. For example if the weight × diameter profile has H diameter

intervals I1 , . . . , IH , with centers d1, . . . , dH  and with associated proportional weights
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p1 , . . . , pH , then on the assumption of uniform specific gravity, the diameter histogram

q1 , . . . , qH  is approximated by the perturbation [d1
-3, . . . , dH -3] ⊕ [ p1 , . . . , pH ]. A

consequence of the perturbation invariance property of the compositional metric ∆S is

that the distance between profiles is the same as between histograms, a clearly desirable

property.

We have already stated in Aitchison et al (2000) that whether grain-size data is

considered as grouped ordinal data and some class of univariate distributions is used to

characterize each such ‘histogram’ or each histogram is considered a compositional

vector is certainly an open question. In our view, in situations where the objective is to

compare a number of weight × diameter profiles, until a satisfactory class of

distributions giving good fits to the histogram emerges, the treatment of such data as

compositional is certainly viable, with possibilities of inferring the nature of an

underlying process through the study of possible differential perturbation processes.

Zier and Rehder put forward a challenge that they look forward to reading the

first paper with the general advice: ’Follow Aitchison’s simple principles of

compositional data analysis, logtransform (presumably the intention is logratio

transform) your histograms.’ Anything that we write on the subject will certainly not be

the first. Sediment compositions reported as (sand, silt, clay) compositions are just such

weight  × diameter profiles and have been traditionally treated as compositions for

many decades. An example of a successful modeling as a differential perturbation

process is to be found in Aitchison and Thomas (1998). They should also search the

statistical literature more carefully. There is a huge statistical literature on the use of log

odds (logratios of probabilities or frequencies) in statistical analysis, both Bayesian and

non-Bayesian, for example in contingency table analysis, which often involve

comparisons in effect of histograms, often with groupings on an ordinal scale; on the
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use of likelihood ratios (again logratios of probabilities); in logistic regression where the

basic transformation is a logratio of probabilities sometimes associated with an ordinal

scale. There are also many studies in which subjects are invited to make probabilistic

statements concerning a finite number of hypotheses. In studying variability between

subjects or groups of subjects in such studies it is certainly useful to have available a

measure of difference between probability statements and the compositional metric

provides one such measure with sensible properties. For example, subcompositional

coherence provides a necessary form of conditional probability coherence (Aitchison,

2001). Among other measures of differences between probability distributions or

histograms some such as the Kullback-Leibler divergences involve logratios. Until such

time as Rehder and Zier are prepared to make their criticism constructive by producing

some overwhelmingly convincing measure of difference for histograms or some

superior form of compositional data analysis we would encourage geologists to

persevere with the current form of simplicial analysis.    

 The two major fallacies of Zier and Rehder (1998).  Although Aitchison et al (2000)

has already refuted the original claim by Zier and Rehder (1998) and now repeated in

Rehder and Zier (2001), that their ‘single example can disprove the logratio method’, let

us again point out the two major fallacies in their argument.

(1)  The claim by Zier and Rehder (1998) that the logratio distance they use is not

invariant is true but it is not the compositional metric we advocate, as we have already

clearly pointed out in detail in Aitchison et al (2000). Moreover, the peculiar limiting

properties they ascribe to the incorrect metric do not apply to the correct metric ∆S .

Specifically, if p is any perturbation, then
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∆S (x, p ⊕ x) = ∆S (e, p) = || p ||

which varies with p and → 0 as p → e, the identity perturbation.

(2) The other persistent argument is that the compositional metric ∆S warps the vector

space or distorts the Euclidean metric. This is a curious argument in view of the fact that

it is ∆S  that is the natural metric associated with the ⊕ and ⊗ operations of the simplex

vector space, so that the distorting culprit is the blind application of the non-metric

Euclidean difference to a space for which it was never designed. This seems to be

somewhat similar to a flat-earth approach to distance on the sphere,say x2 + y2 + z2 = r2 .

Would Rehder and Zier advocate the Euclidean metric √{(x1–x2 )2 + (y1–y2 )2 + (z1–z2 )2}?

We would prefer great circle distance

r arccos{(x1x2 + y1y2 + z1z2 )/r2}

in order to ensure that our aircraft has enough fuel for its practical purpose.
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