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ABSTRACT

For the application of a hierarchic classi�cation method it is necessary to establish the
measure of di�erence to be used� as well the appropriate measures of central tendency
and dispersion in accordance with the nature of the data� In this study we review the
requirements for the measure of di�erence when the data set is compositional and we
present speci�c measures of central tendency and dispersion to be used with hierarchical
clustering methods�

�� INTRODUCTION

Any vector x � �x�� x�� ���� xD� representing proportions of some whole is subject to the
unit	sum	constraint x�
 x�
 ���
 xD � �� Therefore� a suitable sample space for compo	
sitional data� consisting of such vectors of proportions �compositions�� is the unit simplex
SD �see ��
 for further details��

Frequently� some form of statistical analysis is essential for the adequate analysis
and interpretation of the data� Nevertheless� all too often the unit	sum	constraint is
either ignored or improperly incorporated into the statistical modeling giving rise to
an erroneous or irrelevant analysis� The purpose of this paper is to revise the speci�c
statistical requirements of standard hierarchic agglomerative classi�cation methods when
they are performed on compositional data� We place emphasis on the measure of di�erence
between two compositions and the measures of central tendency and dispersion of a data
set�

In the next section we analyze some possible distances and dissimilarities between
two compositions� For these measures� the requirements proposed by Aitchison ��
 to
de�ne a measure of di�erence between two compositions are considered� and an example
is presented to illustrate their performance� Then� we propose a modi�cation of the most
standard hierarchic agglomerative classi�cation methods to make them suitable for the
classi�cation of a compositional data set�

�� MEASURES OF DIFFERENCE BETWEEN TWO COMPOSITIONS

Some of the most usual dissimilarities and distances to measure the di�erence between
two compositions are listed in Table �� The performance of some of these measures
and others dissimilarities is analysed in ��
� In the formula of Aitchison�s distance the

divisor g�x� �
�QD

k�� xk

���D
represents the geometric mean of the composition x� This



distance is equivalent to the Euclidean distance between the transformed compositions
by the centered logratio function clr� The angular distance gives the angle between two
compositions� i�e� between their projection in the unit hypersphere� This measure was
proposed by Watson and Philip in ���
� The Bhattacharyya �arccos� distance between
two compositions xi and xj can be interpreted as the angle between the unit vectors

p
xi

and
p
xj� This distance is directly related to the Matusita distance� which is also known

as the Hellinger distance� The Bhattacharyya �arccos� and Matusita distances� and the
Bhattacharyya �log� and J	divergence dissimilarities can be considered particular cases of
a more general class of dissimilarities commonly called Je�reys divergences� More speci�c
information can be found in ��
�

The Mahalanobis distances 	 crude and clr 	 between any two compositions are referred
to a compositional data set X� The matrix K�� which appears in Mahalanobis �crude�
distance� symbolizes the Moore	Penrose pseudo	inverse of the covariance matrix K of the
compositional data setX� Equally� the Mahalanobis �clr� distance uses the Moore	Penrose
pseudo	inverse 	� of the covariance matrix 	 of the transformed data set clr�X��

In ��
 Aitchison proposes that any scalar measure of di�erence between two compo	
sitions should verify four speci�c requirements� scale invariance� permutation invariance�
perturbation invariance and subcompositional dominance� The scale invariance is not an
essential requirement if it is implicitly assumed that any scalar measure is always applied
to compositional observations previously normalized to one� The permutation invariance
is a logic requirement which is satis�ed by all the measures of Table �� The perturba	
tion invariance requirement plays the same role as the translation invariance requirement
plays in the Euclidean space� Similarly� the subcompositional dominance requirement is
in correspondence with the subspace dominance of the Euclidean distance�

Table � summarizes which of these requirements are veri�ed by the distances and
dissimilarities of Table �� The proof� that Aitchison�s and the Mahalanobis �clr� distances
accomplish the four requirements can be found in ��
� ��
 and ��
�

A simple example will serve to illustrate this assertions� at the same time� it can be
considered as a counterexample for those cases where the properties are not ful�lled�

Let X the compositional data set formed by the four observations in S��

x� � ����� ���� ����� x� � ����� ���� ����� x� � ����� ���� ���� and x� � ����� ���� �����

We symbolize by x�i the perturbed composition p�xi� where p � ����� ���� ����� Similarly�
si symbolizes the subcomposition of the observation xi formed by the �rst two compo	
nents� Figure � shows the location of these elements on the ternary diagram and Table
� summarizes the values of the distances and dissimilarities of Table � between some of
these compositions in S��

The results in Table � con�rm that only the distances of Aitchison and Mahalanobis
�clr� verify all the requirements�

This example is also intended to convince sceptic people that it is not reasonable to
apply Euclidean thinking to measure the di�erence between two compositions� Certainly�
the translation t � ����� ��������� transforms the observation x� into x� and the observa	
tion x� into x�� i�e�� x�
 t � x� and x�
 t � x�� This fact implies that the Minkowski�s�
City Block and Euclidean distance between x� and x� is the same as between x� and x��
because these measures of di�erence are translation invariant� However� from a composi	
tional point of view� the di�erence between x� and x� must be greater than the di�erence



Table �� Some measures of di�erence between two compositions

Distance�Dissimilarity d�xi�xj�

Aitchison

�
DX
k��

�log�
xik

g�xi�
�� log�

xjk

g�xj�
���

� �

�

Angular arccos

�
DX
k��

s
x�ikP
x�ik

s
x�jkP
x�jk

�

Bhattacharyya �arccos� arccos

�
DX
k��

p
xik
p
xjk

�

Bhattacharyya �log� �log

�
DX
k��

p
xik
p
xjk

�

City Block

DX
k��

xik � xjk

J�divergence

�
DX
k��

�log�xik�� log�xjk���xik � xjk�

� �

�

Euclidean

�
DX
k��

�xik � xjk�
�

� �

�

Mahalanobis �crude� ��xi � xj�
�K��xi � xj��

�

�

Mahalanobis �clr�
�
�clr�xi�� clr�xj��

����clr�xi�� clr�xj��
� �
�

Matusita

�
DX
k��

�
p
xik �

p
xjk�

�

� �

�

Minkowski

�
DX
k��

�xik � xjk�
p

� �

p

Table �� Aitchison�s requirements veri�ed by the measures of Table �

Distance�Dissimilarity Scale Permutation Perturbation Subcompositional
invariance invariance invariance dominance

Aitchison Yes Yes Yes Yes
Angular Yes Yes No No
Bhattacharyya �arccos� No Yes No No
Bhattacharyya �log� No Yes No No
City Block No Yes No No
J�divergence No Yes No No
Euclidean No Yes No No
Mahalanobis �crude� Yes Yes No No
Mahalanobis �clr� Yes Yes Yes Yes
Matusita No Yes No No
Minkowski No Yes No No



X1

X2 X3

1*

2*

3*

4*

1

23

4

s1

s2

s3

s4

Figure �� The four observations � to �	 their subcompositions s� to s� and perturbations ��

to �� on the ternary diagram

Table 
� Distances and dissimilarities of Table � between some compositions of Figure �

Distance�Dissimilarity d�x��x�� d�x�

��x
�

�� d�s�� s�� d�x��x�� d�x�

��x
�

�� d�s�� s��
Aitchison 
��� 
��� 
��� 
��� 
��� 
���
Angular 
��� 
�

 
��� 
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�
� 
���
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�
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�
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�
�
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���
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 ���� ��
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��

Mahalanobis �clr� ���� ���� ���� 
��� 
��� 
���
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��� 
��� 
�
� 
��� 
�
� 
���
Minkowski �p�
� 
��
 
��� 
��� 
��
 
�
� 
���

between x� and x�� Observe that x� and x� only di�er in ���� in the two �rst compo	
nents� and the same occurs to x� and x�� But in the �rst case� the di�erence ���� is
produced over a residual of ��� �� ������� whereas in the second case the same di�erence
���� is over a residual of ��� �� � � ����� This argument is equivalent to compare the
corresponding subcompositions

s� � �
�

�
�
�

�
�� s� � �

�

�
�
�

�
�� s� � �

�

�
�
�

�
� and s� � �

�

�
�
�

�
��

which are also plotted in Figure �� From this graphic it is clear that the di�erence between
subcompositions s� and s� is greater than the di�erence between subcompositions s� and
s�� It is also important to point out from this example that the Angular distance doesn�t
have a compositional coherent behavior� because the Angular distance between x� and x�
results greater than the distance between x� and x��




� HIERARCHIC CLUSTER ANALYSIS OF COMPOSITIONAL DATA

Before applying any hierarchic method of classi�cation to a data set X� it is necessary to
establish in advance which are the measures of di�erence� central tendency and dispersion�
to be used in accordance with the nature of data to be classi�ed �see examples in ��
����
��
Thus� if we are using a hierarchic method to classify a compositional data set� we have
to use an appropriate measure of di�erence� like Aitchison�s or the Mahalanobis �clr�
distances�

Consequently� to calculate the matrix of di�erences associated to hierarchic methods
like single linkage� complete linkage and average linkage� when they are applied to a
compositional data set� only Aitchison�s distance of Table � will be suitable� It is not
appropriate to use any one of the other measures of di�erences recorded in Table ��

Likewise� any method of classi�cation which reduces the measure of di�erence from
a composition to a cluster C of compositions to the di�erence between the composition
and the �center� of the group� would have to take into account that the arithmetic mean
C of the data set is usually not representative of the �center� of the set� and neither is
compatible with the group of perturbations� Aitchison ��
 proposes the geometric mean
cen�C� as a more representative point of the central tendency of a compositional data set
C in SD� It is de�ned as

cen�C� �
�g�� g�� ���� gD�

g� 
 g� 
 ���
 gD
� ���

where gj �
�QN

i�� xij

���N
is the geometric mean of the jth component of the compositions

x�� x������ xN in C� Thus� we recommend to use ��� as a de�nition of the �center� of a set
of compositions� in addition to Aitchison�s distance�

On the other hand� the well	known method of Ward is a hierarchic method which
uses the measure of dispersion to classify the observations of a data set� In essence� this
method is based on the concept of variability on a cluster C� This variability is de�ned
�see ��
� Section ���� as follows X

x�C

d�eu
�
x�C

�
� ���

where C denotes the center of the group� When the data set is compositional� we suggest
replacing this measure by X

x�C

d�at �x� cen�C��� ���

where dat symbolizes Aitchison�s distance� This measure is equivalent to the measure of
total variability of a compositional data set proposed by Aitchison in ��
 and ��
�

The above adaptations are introduced to make the standard hierarchic clustering meth	
ods compatible with the compositional nature of a data set X� All these adaptations can
be omitted if these methods are directly applied to the transformed data set clr�X�� This
equivalence is discussed in detail in ���
�



�� CONCLUSIONS

� When the standard hierarchic classi�cation methods are applied to compositional
data sets� they should be adapted to take into account the nature of the data�

� The distance of Aitchison between two compositions and the center and variability
of a compositional data set de�ned in ��� and ��� are compatible with the compo	
sitional nature of the data� We suggest performing the usual hierarchic methods of
classi�cation using these measures� This is equivalent to the application of standard
clustering methods to the centered logratio transformed data set�

� It is necessary to study more deeply the performance of other usual non	parametric
and parametric classi�cation methods when they are applied to compositional data�
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