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ABSTRACT

For the application of a hierarchic classification method it is necessary to establish the
measure of difference to be used, as well the appropriate measures of central tendency
and dispersion in accordance with the nature of the data. In this study we review the
requirements for the measure of difference when the data set is compositional and we
present specific measures of central tendency and dispersion to be used with hierarchical
clustering methods.

1. INTRODUCTION

Any vector x = (1, s, ..., £p) representing proportions of some whole is subject to the
unit-sum-constraint xy + x2 + ... + rp = 1. Therefore, a suitable sample space for compo-
sitional data, consisting of such vectors of proportions (compositions), is the unit simplex
SP (see [1] for further details).

Frequently, some form of statistical analysis is essential for the adequate analysis
and interpretation of the data. Nevertheless, all too often the unit-sum-constraint is
either ignored or improperly incorporated into the statistical modeling giving rise to
an erroneous or irrelevant analysis. The purpose of this paper is to revise the specific
statistical requirements of standard hierarchic agglomerative classification methods when
they are performed on compositional data. We place emphasis on the measure of difference
between two compositions and the measures of central tendency and dispersion of a data
set.

In the next section we analyze some possible distances and dissimilarities between
two compositions. For these measures, the requirements proposed by Aitchison [2] to
define a measure of difference between two compositions are considered, and an example
is presented to illustrate their performance. Then, we propose a modification of the most
standard hierarchic agglomerative classification methods to make them suitable for the
classification of a compositional data set.

2. MEASURES OF DIFFERENCE BETWEEN TWO COMPOSITIONS

Some of the most usual dissimilarities and distances to measure the difference between
two compositions are listed in Table 1. The performance of some of these measures
and others dissimilarities is analysed in [8]. In the formula of Aitchison’s distance the
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divisor g(x) = (H£:1 xk> represents the geometric mean of the composition x. This



distance is equivalent to the Euclidean distance between the transformed compositions
by the centered logratio function clr. The angular distance gives the angle between two
compositions, i.e. between their projection in the unit hypersphere. This measure was
proposed by Watson and Philip in [11]. The Bhattacharyya (arccos) distance between
two compositions x; and x; can be interpreted as the angle between the unit vectors |/x;
and /X;. This distance is directly related to the Matusita distance, which is also known
as the Hellinger distance. The Bhattacharyya (arccos) and Matusita distances, and the
Bhattacharyya (log) and J-divergence dissimilarities can be considered particular cases of
a more general class of dissimilarities commonly called Jeffreys divergences. More specific
information can be found in [6].

The Mahalanobis distances - crude and clr - between any two compositions are referred
to a compositional data set X. The matrix K*, which appears in Mahalanobis (crude)
distance, symbolizes the Moore-Penrose pseudo-inverse of the covariance matrix K of the
compositional data set X. Equally, the Mahalanobis (clr) distance uses the Moore-Penrose
pseudo-inverse I'" of the covariance matrix T' of the transformed data set clr(X).

In [2] Aitchison proposes that any scalar measure of difference between two compo-
sitions should verify four specific requirements: scale invariance, permutation invariance,
perturbation invariance and subcompositional dominance. The scale invariance is not an
essential requirement if it is implicitly assumed that any scalar measure is always applied
to compositional observations previously normalized to one. The permutation invariance
is a logic requirement which is satisfied by all the measures of Table 1. The perturba-
tion invariance requirement plays the same role as the translation invariance requirement
plays in the Euclidean space. Similarly, the subcompositional dominance requirement is
in correspondence with the subspace dominance of the Euclidean distance.

Table 2 summarizes which of these requirements are verified by the distances and
dissimilarities of Table 1. The proof, that Aitchison’s and the Mahalanobis (clr) distances
accomplish the four requirements can be found in [2], [4] and [5].

A simple example will serve to illustrate this assertions; at the same time, it can be
considered as a counterexample for those cases where the properties are not fulfilled.

Let X the compositional data set formed by the four observations in S?:

x1 = (0.1,0.2,0.7), x»=(0.2,0.1,0.7), x3=(0.3,0.4,0.3) and x4 = (0.4,0.3,0.3).

We symbolize by x! the perturbed composition p ox;, where p = (0.8,0.1,0.1). Similarly,
s; symbolizes the subcomposition of the observation x; formed by the first two compo-
nents. Figure 1 shows the location of these elements on the ternary diagram and Table
3 summarizes the values of the distances and dissimilarities of Table 1 between some of
these compositions in S3.

The results in Table 3 confirm that only the distances of Aitchison and Mahalanobis
(cIr) verify all the requirements.

This example is also intended to convince sceptic people that it is not reasonable to
apply Euclidean thinking to measure the difference between two compositions. Certainly,
the translation t = (0.2,0.2, —0.4) transforms the observation x; into x3 and the observa-
tion Xs into x4, i.e., X1 +t = x3 and x, +t = x4. This fact implies that the Minkowski’s,
City Block and Euclidean distance between x; and x, is the same as between x3 and x4,
because these measures of difference are translation invariant. However, from a composi-
tional point of view, the difference between x; and x, must be greater than the difference



Table 1: Some measures of difference between two compositions
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Table 2: Aitchison’s requirements verified by the measures of Table 1

Distance/Dissimilarity Scale Permutation Perturbation Subcompositional
invariance invariance invariance dominance
Aitchison Yes Yes Yes Yes
Angular Yes Yes No No
Bhattacharyya (arccos) No Yes No No
Bhattacharyya (log) No Yes No No
City Block No Yes No No
J-divergence No Yes No No
Euclidean No Yes No No
Mahalanobis (crude) Yes Yes No No
Mahalanobis (clr) Yes Yes Yes Yes
Matusita No Yes No No
Minkowski No Yes No No
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Figure 1: The four observations 1 to 4, their subcompositions s; to s; and perturbations 1*
to 4* on the ternary diagram

Table 3: Distances and dissimilarities of Table 1 between some compositions of Figure 1

Distance/Dissimilarity — d(x1,x%2) d(x},x3) d(s1,s2) d(x3,%x4) d(x5,x5) d(ss3,s4)

Aitchison 0.98 0.98 0.98 0.41 0.41 0.41
Angular 0.19 0.33 0.64 0.24 0.08 0.28
Bhattacharyya (arccos) 0.19 0.22 0.34 0.12 0.09 0.14
Bhattacharyya (log) 0.02 0.02 0.06 0.01 0 0.01
City Block 0.2 0.4 0.67 0.2 0.14 0.29
J-divergence 0.37 0.43 0.68 0.24 0.18 0.29
Euclidean 0.14 0.24 0.47 0.14 0.09 0.2
Mahalanobis (crude) 3 4.46 5.07 3 1.63 0.93
Mahalanobis (clr) 5.12 5.12 5.12 0.88 0.88 0.88
Matusita 0.19 0.22 0.34 0.12 0.09 0.14
Minkowski (p=3) 0.13 0.21 0.42 0.13 0.08 0.18

between x3 and x4. Observe that x; and x5 only differ in +0.1 in the two first compo-
nents, and the same occurs to x3 and x4. But in the first case, the difference 4+0.1 is
produced over a residual of 0.3 (= 1—0.7), whereas in the second case the same difference
+0.1 is over a residual of 0.7 (= 1 — 0.3). This argument is equivalent to compare the
corresponding subcompositions

%7%)7 52:(§7%)7 83 = (%73) and 84 = (%7%)7

which are also plotted in Figure 1. From this graphic it is clear that the difference between
subcompositions s; and s, is greater than the difference between subcompositions s3 and
s4. It is also important to point out from this example that the Angular distance doesn’t
have a compositional coherent behavior, because the Angular distance between x5 and x4
results greater than the distance between x; and xs.
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3. HIERARCHIC CLUSTER ANALYSIS OF COMPOSITIONAL DATA

Before applying any hierarchic method of classification to a data set X, it is necessary to
establish in advance which are the measures of difference, central tendency and dispersion,
to be used in accordance with the nature of data to be classified (see examples in [9],[10]).
Thus, if we are using a hierarchic method to classify a compositional data set, we have
to use an appropriate measure of difference, like Aitchison’s or the Mahalanobis (clr)
distances.

Consequently, to calculate the matrix of differences associated to hierarchic methods
like single linkage, complete linkage and average linkage, when they are applied to a
compositional data set, only Aitchison’s distance of Table 1 will be suitable. It is not
appropriate to use any one of the other measures of differences recorded in Table 1.

Likewise, any method of classification which reduces the measure of difference from
a composition to a cluster C of compositions to the difference between the composition
and the ‘center’ of the group, would have to take into account that the arithmetic mean
C of the data set is usually not representative of the ‘center’ of the set, and neither is
compatible with the group of perturbations. Aitchison [3] proposes the geometric mean
cen(C) as a more representative point of the central tendency of a compositional data set
C in SP. It is defined as

C@?’L(C) — (917927"'79D) (1)
g1+92+..+9gp

1/N
where g; = (vazl xij) is the geometric mean of the jth component of the compositions

X1, X3,..., Xy in C. Thus, we recommend to use (1) as a definition of the ‘center’ of a set
of compositions, in addition to Aitchison’s distance.

On the other hand, the well-known method of Ward is a hierarchic method which
uses the measure of dispersion to classify the observations of a data set. In essence, this
method is based on the concept of variability on a cluster C. This variability is defined

(see [7], Section 5.2) as follows
> d2, (x,C), (2)

xeC

where C denotes the center of the group. When the data set is compositional, we suggest
replacing this measure by
S &, (x, cen(C)), (3)
xeC
where d,; symbolizes Aitchison’s distance. This measure is equivalent to the measure of
total variability of a compositional data set proposed by Aitchison in [2] and [3].

The above adaptations are introduced to make the standard hierarchic clustering meth-
ods compatible with the compositional nature of a data set X. All these adaptations can
be omitted if these methods are directly applied to the transformed data set ¢lr(X). This
equivalence is discussed in detail in [10].



4. CONCLUSIONS

e When the standard hierarchic classification methods are applied to compositional

data sets, they should be adapted to take into account the nature of the data.

The distance of Aitchison between two compositions and the center and variability
of a compositional data set defined in (1) and (3) are compatible with the compo-
sitional nature of the data. We suggest performing the usual hierarchic methods of
classification using these measures. This is equivalent to the application of standard
clustering methods to the centered logratio transformed data set.

It is necessary to study more deeply the performance of other usual non-parametric
and parametric classification methods when they are applied to compositional data.
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