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1. Introduction

Compositional data are inherently multivariate by nature but are characterized by the distinguishing
feature that they are comprised of non-negative components which sum to a constant. Without loss
of generality, it can be assumed that the constant in question is 1. More than twenty years have
elapsed since Aitchinson’s pioneering contributions to the field were published (see Aitchinson (1986)
and references therein). These contributions to the literature were seminal in the sense that they
were the first publications which developed statistical methods specifically designed for the analysis of
compositional data and illustrated their use in the analysis of real compositional data. Nevertheless,
a number of earlier studies, primarily involving the use of multivariate methods in the analysis of
geological data, had discussed and criticized the application of standard multivariate techniques which
ignored the non-negativity and unit-sum constraints inherent in compositional data. Indeed, Pearson,
as far back as 1897, had warned of the consequences of using such techniques to explore the correlations
between the components making up a composition. Moreover, it is undoubtedly the case that the
seminal works of Aitchinson referred to above acted as the catalyst for subsequent developments in
the field of the statistical analysis of compositional data. Whilst contributions from other authors were
initially scarce, research in the field has, in recent years, exhibited renewed and increasing interest.
Aitchinson & Egozcue (2005) document the major historical developments in the field and suggest
potential directions for future research.

This paper focuses on a particular type of compositional data, namely multivariate time series
comprised of compositional data. In what follows, we will use the abbreviation CTS when referring to
a “compositional time series”. Data of this kind frequently arise in disciplines as disparate as biology,
demography, ecology, economics, geology and politics. Examples are: the percentages of different
species of fish recorded in a lake at different instants in time; the composition of monthly immigration
to a city according to the country of origin; the daily market shares at the end of trading; the breakdown
of household monthly consumption by type of item in budget surveys; and the results of opinion polls
conducted at different times during an election campaign. In Section 2 we review developments in
the field of the statistical analysis of CTS. Historically, the main approach to analyzing CTS data has



been based on the application of an initial transform to break the unit sum constraint, followed by
the use of standard time series techniques. Finally, the inverse transformation is used on the derived
results so as to obtain results pertinent to the original sample space. Section 2 is structured around
the various forms of transformation that have been proposed within the literature, although we also
present the details of an alternative modelling approach in which the data are modelled directly in
the space in which they were originally observed. The paper ends, in Section 3, with a brief summary
and some concluding remarks.

2. Approaches to the Analysis of Compositional Time Series

2.1 The additive log-ratio transformation

Let xt = (xt1, . . . , xtD)′, t = 1, 2, , . . . , n denote a k-dimensional CTS such that xtj > 0 for j = 1, . . . , D

and
∑D

j=1 xtj = 1 at each time t. The additive log-ratio (alr) transformation of xt produces the vector
yt in <d with components ytj = alr(xtj) = log(xtj/xtD), j = 1, . . . , d, t = 1, 2, . . . , n, where d = D− 1.
Thus, the alr transformation is a one-to-one transformation from the natural sample space, namely
the simplex SD = {(x1, . . . , xD)′ : x1 > 0, . . . , xD > 0;x1 + . . .+xD = 1}, to <d. The inverse of the alr
transformation is known as the additive logistic transformation. The original idea of applying the alr
transformation in the analysis of compositional data is due to Aitchison (see Aitchison (1986)). In the
context of time series, the use of the alr transformation has been common practice in the analysis of
univariate time series of proportions. However, in such analyses, no reference is generally made to the
compositional nature of the data. Wallis (1987) can be considered as the pioneer of this approach. In
the remainder of our discussion we will concentrate on the multivariate case for which the associated
research has been far less extensive.

Since the transformed time series, yt, is an unconstrained multivariate time series in <d, standard
multivariate techniques can be used to analyze it. Thus, the possibility of vector ARMA (VARMA)
modelling springs immediately to mind. Such an approach is based on the use of VARMA models to
obtain estimates and forecasts for the transformed series, followed by the application of the additive
logistic transformation to obtain the equivalent inferential results for the original CTS. This approach
was first discussed by Brunsdon (1987) in the context of analyzing CTS from repeated sample surveys.
In Brunsdon (1987), Smith & Brunsdon (1989) and Brunsdon & Smith (1998) the authors first proved
that such an approach is invariant to the choice of the component used as the common divisor in the
alr transformation. Secondly, assuming normality for the distribution of yt, they obtained forecasts
for the original CTS, xt, by calculating the mean of the corresponding additive logistic distribution
numerically. They also derived confidence regions for xt. The applications they considered involved
compositional data from a Gallup poll conducted in the U.K. as well as data from the Australian
Labour Force Survey. Also in the field of repeated sample surveys, Silva (1996) and Silva & Smith
(2001) made use of the alr transformation too, but then employed a state space modelling approach
for the transformed time series. They proved that their approach is also invariant to the choice of
the component used in the common divisor of the alr transformation, and illustrated its use in the
analysis of CTS data from the Brazilian Labour Force Survey.

Ravishanker, Dey & Iyengar (2001) generalised the approach of Brunsdon & Smith (1989) in
the sense that they used an extension of VARMA models incorporating covariates. They assumed
that the transformed alr time series, yt, follows a regression model with VARMA normal distributed
errors. The procedures required to fit such models and carry out inference for them are really rather
complex. The authors address the possible non-uniqueness of the fitted model using a Bayesian
hierarchical approach to model selection. They also carried out a Monte Carlo experiment to estimate
the expected proportions for the compositions, based on samples drawn from a simulated posterior
density function. Their empirical results for CTS mortality data from Los Angeles showed the utility



of their approach in explaining the dependence of different categories of mortality on air quality.
Ratnaparkhi & Krishnamurthy (2002) extended yet further the potential application of the

approach of Brunsdon & Smith (1989). They added another component to the regression model with
VARMA normal errors which allows for the potential heteroscedasticity of the transformed alr time
series. Specifically, they proposed fitting generalised autoregressive heteroscedastic (GARCH) models
to the alr transformed series. They illustrated the use of this approach in the analysis of data on
the micro-finance system employed in Maharashtra State (India). More precisely, they analysed a
monthly CTS consisting of the proportions for four categories of loans made by self-help groups using
a model incorporating a covariate that represented the savings of the different self-help groups. In
their analysis they made use of cross-validation; fitting their model to part of the data and using the
remaining of the data to evaluate the quality of the predicted proportions.

2.2 Box-Cox transformation

Aitchison (1986) introduced the use of the well-known Box-Cox transformation as an attractive alter-
native to the alr transformation. The Box-Cox transformation has the advantage of including the alr
transformation as a special case. However, the only application of this approach that we are aware
of is that presented in Bhaumik, Dey and Ravishanker (2003). These authors modelled the Box-Cox
transformed data using dynamic linear models incorporating a rich class of distributions for the er-
rors based on scale mixtures of multivariate normal distributions. This general class of distributions
includes as special cases the multivariate normal, Student-t, logistic and stable distributions, amongst
others. Bhaumik, Dey and Ravishanker (2003) used the same complex procedures as those proposed
in Ravishanker, Dey & Iyengar (2001) to carry out model selection and inference. They illustrated
their approach using two CTS; the mortality data from Los Angeles (analysed previously by Ravis-
hanker, Dey & Iyengar (2001)), and a CTS on vehicle production which had been previously analysed
by Grunwald (1987).

2.3 Centered log-ratio transformation

The centered log-ratio transformation (clr) was also proposed by Aitchinson (1986) as a means of
transforming compositional data into data distributed throughout D-dimensional real space. The clr
transformation of a CTS, xt, is defined as yt = log(xt/g(xt)), where g(.) denotes the geometric mean.
Compared with the alr transformation, the clr transformation has the advantage of not requiring a
reference component, but has the disadvantage of a singularity due to the fact that

∑D
j=1 ytj = 0

for all t. Quintana & West (1988) were the first to use the clr transformation to analyse CTS data.
They modelled clr transformed data on monthly Mexican imports using a type of dynamic regression
model which allowed for subjective as well as exogenous interventions. Their approach assumes a
multivariate logistic normal distribution for the underlying process. They resolved the singularity
problem by transforming yt to y′tK, where K = I − D−111′, 1 = (1, . . . , 1)′. Brandt, Monroe &
Williams (1999) made use of the same solution to the singularity problem when they employed VAR
normal models incorporating an unlagged covariate to model clr transformed CTS data from U.S.
Gallup Polls.

2.4 Direct modelling in the simplex

Around the same time as the publication of Brunsdon (1987) and Quintana & West (1988), Grunwald
(1987) introduced a rather different approach to analysing CTS, which had also been inspired by
some of the earlier ideas of Aitchinson. There, and in Grunwald, Raftery & Guttorp (1993), the
authors developed space state models which could be used to model CTS data directly in the simplex.
The distribution of the CTS conditioned on the unobserved state was assumed to be Dirichlet (see
Aitchinson (1986)). The state distribution was assumed to be Dirichlet conjugate. This was a new



generalisation of the Dirichlet distribution proposed by them in order to allow for dependence between
the components. They illustrated the application of their model using CTS data from the U.S. Federal
Government as well as data on global motor vehicle production.

3. Concluding remarks

We have considered two general approaches to analysing compositional time series data; one
involving transformation from the simplex to real space and a second which models the data directly
in the simplex. The former approach makes use of the alr, Box-Cox or clr transformations as well as
numerous established techniques for analysing multivariate time series. However, there are potentially
other transformations as well as different time series modelling approaches that one might consider
using in the future. The second approach is based on the use of the Dirichlet model and extensions
thereof. In a similar vein, the possibility of using other models defined on the simplex to model the
data directly suggests itself as a potential line of future research.

In the majority of the publications in the field, the authors make use of the transformations
proposed by Aitchinson and concentrate more on the time series analysis of the transformed data
than on the issues related to their original compositional nature. One important issue of this kind is
the problem of dealing with 0’s and 1’s which may occur at any instant t. Another is the problem
of the singularity associated with the clr transformation. A further issue which certainly deserves
consideration is the objective comparison of the different approaches and an evaluation of the quality
of forecasts produced by them.
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