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Summary. The purpose of this paper is to introduce the concept of differentiability
of a vector-valued function on the simplex. In particular, the concepts of compositional
gradient and compositional directional derivative of a real-valued function on the simplex
are exposed and discussed.

1. Introduction

In some cases a response variable y is assumed to depend only on the proportions
x1,...,xp of D ingredients or parts present in a specific mixture and not on the amount
of the mixture. These proportions are often expressed by volume, by weight, by mole
fraction, etc. In mathematical terms the response variable ¢ can be interpreted as a real
or vector-valued function ¢ whose domain is a subset of the simplex space.

In many practical situations the expression y = ¢(z1,...,zp) is unknown and the em-
phasis is on fitting the simplest model to sample or experimental data. However, in some
cases, the function ¢ can be deduced from physical laws. One example is the rubidium-
strontium method of dating Rb-minerals —based on the law of radioactivity— which uses
the following function to determine the “age” ¢ of a mineral:
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where 8657, 87Sr and 87Rb are, respectively, the total number of atoms of these isotopes in
a unit weight of the mineral at the present time; & is the 87Sr /%Sy ratio of strontium that
was incorporated into the mineral at the time of its formation; ) is the decay constant of
87Rb in units of reciprocal years (A = 1.42 x 107" y=!); and ¢ is the time elapsed in years
since the time of formation of mineral, that is, the “age” of the mineral. The number
of 8Sr atoms is constant because this isotope is stable and not produced by decay of
a naturally occurring isotope of another element. The function (1) is the basis for age
determination by the Rb-ST method when the mineral has remained a “closed system”
with respect to rubidium and strontium, and when the assumed value &, of the initial
87Sr /86Sr ratio is appropriate. From a mathematical point of view the expression (1) is
a real-valued function defined on a subset in the simplex S? of 3-parts 865r-37Sr-87Rb.

In the next sections we introduce the main topics on differential calculus of the vector-
valued functions on the compositional space. We suppose known the terminology asso-
ciated to the metric vector space structure of the compositional space C? introduced in
Barcel6-Vidal et al. (2001) and the notation introduced in Aitchison et al. (2002).



2. Vector-valued functions on C%
2.1 Scale-invariant vector-valued functions on IRE

Let f be a vector-valued function whose domain is a subset A in IRf and with range
contained in R™. Thus f assigns each w in A a value f(w) = (fi(w),..., fim(W))’, an
m-tuple in R™.

We say f is scale-invariant —or homogeneus of degree 0— if f(kw) = f(w) for every
positive real k£, and for every w in A for which kw in A. Obviously, if a vector-valued

function f(w) = (fi(w),..., f(w))’, with domain A C RY, is scale-invariant, its com-
ponents fi,..., f,, are also real-valued scale-invariant functions on A. And inversely, if
all the components fi, ..., f,, are real-valued scale-invariant functions, the vector-valued
function f(w) = (fi(w),..., f(w))" is scale-invariant.

Let A be a subset of ]Rf. We define the scale closure of A, denoted A*, as the set
A*={kw: k>0,we A}
The set A is said to be scale-closed, if A* = A.

It is clear that any scale-invariant vector-valued function f with domain A C ]Rf can be
extended to the scale closure A* of A. It suffices to define f(kw) = f(w) (k> 0) (w €
A). Obviously, this extended function with domain A* is also scale-invariant. Therefore,
throughout this paper, we shall implicitly suppose that the domain of any scale-invariant
function is always an scale-closed subset.

Let f : A — IR™ be an scale-invariant vector-valued function defined on a subset A
in ]Rf with values in IR™. It induces a vector-valued function f : A — R™ defined
on A = cclA in C% Certainly, if ¢ is a composition which belongs to A, there exists
at least a vector w in A such that cclw = c. Then, we define f(c) as equal to f(w).
As f is scale-invariant, it is clear that f(c) is univocally defined. We will denote by f
the vector-valued function defined on A = cclA in C? associated to the scalar invariant
vector-function f defined on the scalar-closed subset A in ]Rf . Inversely, if ¢ : A — R™
is a vector-valued function defined on a set A in C¢ with values in R™, it can be proved
that there exist an unique scale-invariant function f defined on an scale-closed set A in
IRf , such that f = . Therefore we can suppose that any vector-valued function defined
on a set in C? is derived from an scale-invariant vector-valued function defined on an
scale-closed set in ]Rf .

2.2 C-linear functions on C%
According to the vector space structure of (C¢, @, ®), a vector-valued function ¢ : C? —
R™ is C-linear if
pwew) = p(w) +pw') (w,w' e,
and

pA@w) =p(w) (welh (AeR).

It can be proved that, ¢ is C-linear if and only if there exists a constant m x D matrix
A, constrained by the equality Alp = 0,,, such that f = ¢, where f : ]Rf — R™ is



the real-valued function defined by the expression
f(w)=Alogw (weRY).

3. Derivatives on C¢

3.1 Derivative of scale-invariant vector-valued functions on Rf

Let f = (f1,...,fm) : A — R™ be a vector-valued function whose domain is an open
subset A in ]Rf. If f is differentiable at w* € A, we will denote by

%(w*) %(w*)
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the derivative of f at w*. Therefore, this derivative is a m x D matrix referred to as the
matrix of partial derivatives of f at w*. In particular, if f is a real-valued function, its
derivative at w*

Df(w*) =[ 2w ... Z(w)]
is called the gradient of f at w* and denoted by V f(w*).

According to the well-known FEuler’s theorem for homogeneus functions, if f is scale-
invariant and differentiable at w* € A, then
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for each + = 1,...,m. Furthermore, f is also differentiable at kw*, for each k£ > 0, and

8w]( w) = anj(w )

foreachi=1,....,m,and j=1,...,D.

3.2 Derivative of vector-valued functions on C%

Let f = (fi,-..,fm) : A — IR™ be a scale-invariant vector-valued function whose
domain is an open and scale-closed subset A in ]Rf. Let f = (fi,..., fm) be the vector-
valued function defined on A = cclA in C? associated to function f.

We say that f is C-differentiable at w* in A if it exists a m x D matrix A, constrained
by the equality A1, = 0,,, such that

o L£O¥" @ 1) — fw") — Alogu | _
11m —

ggl_p || u ||C

where 1p = ccl(1,...,1)" is the neutral element of (C¢, ®).



The element (i, j)-th of matrix A will referred to as the C-partial derivative of f; with

respect to the j-th coordinate at w* and is denoted by Cfl( w*). It is easy to prove that
wj
Bcﬁ(w*) im fi(wi, .. wi_, wiexpt,wiyy, ..., wh) — fi(w?)
8wj T t—0 t .

From this interpretation of the C-partial derivatives, it is not difficult to prove that f is
C-differentiable at w* in A if and only if f is differentiable at w* in A. Furthermore, the
C-partial derivatives of f at w* and the partial derivatives of f at w* are related by the

equality
%(W*) _ afl ( *)
ow; ~ wj dw; ’

foreacht=1,...,m,and 5 =1,...,D.

The matrix

dcf de f

o (W) g (w)
A= : ol

O fm /4 ¢ fm *

acl:(w) —;u;(w)

will be referred to as the matrix of C-partial derivatives of f at w* and will be denoted
by D f(w*).

In particular, if f is a real-valued function, the matrix of C — partial derivatives of f at

*

w

Def(w') = [ﬂ(w_*), o (_*)]

8w1 a’LUD

is called the C-gradient of f at w* and denoted by V¢f(w*). The first-order Taylor
approximation of f in a neighbourhood of w* is given by

f(w*;u) +Z<

) logu; + Ry(w”;u),

awj

where u = ccl(uy, ..., up)’, and Ry (w*u)/ || ullc— 0in R as u % 1p in C%

4. Directional derivatives on C¢

Let f : ]Rf — IR be a scale-invariant real-valued function defined on ]Rf and f be the
real-valued function defined on C¢ associated to function f. Let w*, u € C¢.

Then, the C-directional derivative of f at w* along the direction u is given by

(di(w_*® (t® u))) )

dt

if this exists. From this definition, it is no difficult to prove that the C-directional deriva-
tive can also be defined by the formula

f(w)lkuia s :wButD) B f(wL s :wD)
t—0 t )




If f is differentiable, then all C-directional derivatives of f exist. Furthermore, the C-
directional derivative at w* € C% along the direction u € C? is given by

ij—aw‘(w)logu] Vef(w') logu. (2)
j

J=1

oints in the direc-

Therefore, if Ve f(w*) # 0}, the composition ccl {exp (ch( *) )
tion along which f is increasing the fastest in a C-neighbourhood of

We can deduce from (2) that the C-directional derivative of f at w* € C% along the
direction
u; =ccl(l,...,1,e,1,...,1) (j=1,...,D)

— —_—— N

j-1 D—j
is equal to
f o LOf
G (30 = w g (w). 3

If the C-directional derivative of f along the direction u; is equal to 0 on C?, we say that
f is C-independent of the j-th part. It is clear from (3) that f is C-independent of the
J-th part if and only if f does not depend of the j-th coordinate w; on ]Rf.

5. Example

The function (1) giving the “age” ¢ of a mineral from the 87Sr /%Sy and 8"Rb/36Sr ratios
can be interpreted as a scale-invariant real-valued function f

87Rb
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defined on

8757“
A= {(8651",8757",871%17) € RS :

i)

Therefore, the function f induces a real-valued function i defined on A = cclA in C%
This function f can also be interpreted as a function on the simplex S§*. Figure 1 shows
some level contours of this function for A = 1.42 x 10~ and &, = 0.7071. The projections

of these level contours on the simplex are straight segments from a common point on the
865y —87.Sr edge.

The C-gradient of f at w = ccl (*S7,57.Sr,5" Rb)' is equal to

Vel (w) = oA [ o g - (i—ﬁ)] (4)

u 875y 87R 86
(8657. - 50) + 865y ST

From (4) we deduce that 387£* (w) is always positive in each w € A. It means that the
“age” of a mineral increases when 87S7 increases and the 8"Rb/%Sr ratio remains constant.
Similarly, the C-partial derivative %(ﬂ) is negative in each w in the C-interior of A.
Therefore, the “age” of a mineral decreases when 3"Rb increases and the 87Sr/%6Sr ratio
remains constant.



Any of the three dotted paths in Figure (1) represents in each point the direction in
which the values of function f change most rapidly, showing the evolution of the (¥S7-
87Sr-8"Rb)-composition of a mineral from the time of its formation.
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Figure 1: Level contours (¢t = 0; 10 x 10%; 50 x 10%; 100 x 10%; 150 x 10%; 200 x 10° years) of the

8Tsv _g.7071

function ¢t = log | s + 1| on the simplex of 3-parts 36Sr-87Sr-8"Rb. The dotted lines

1
1.42x10- 11

865
show the evolution of the (36S7-87Sr-8"Rb)-composition of three minerals from the time of their formation

References

Aitchison, J., C. Barcel6-Vidal, J. J. Egozcue, and V. Pawlowsky-Glahn (2002). A con-
cise guide to the algebraic-geometric structure of the simplex, the sample space for
compositional data analysis. In Proceedings of IAMG’02, Berlin.

Barcelé-Vidal, C., J. A. Martin-Ferndndez, and V. Pawlowsky-Glahn (2001). Mathema-
tical foundations of compositional data analysis. In G. Ross (Ed.), Proceedings
of IAMG’01 — The sizth annual conference of the International Association for
Mathematical Geology, Volume CD, pp. 20 p. electronic publication.



