DIFFERENTIAL CALCULUS ON THE SIMPLEX

C. Barceló-Vidal, J. A. Martín-Fernández
Depart. d’Informàtica i Matemàtica Aplicada
Universitat de Girona - e-mail: carles.barcelo@udg.es

Summary. The purpose of this paper is to introduce the concept of differentiability of a vector-valued function on the simplex. In particular, the concepts of compositional gradient and compositional directional derivative of a real-valued function on the simplex are exposed and discussed.

1. Introduction

In some cases a response variable y is assumed to depend only on the proportions x_1, \ldots, x_D of D ingredients or parts present in a specific mixture and not on the amount of the mixture. These proportions are often expressed by volume, by weight, by mole fraction, etc. In mathematical terms the response variable y can be interpreted as a real or vector-valued function φ whose domain is a subset of the simplex space.

In many practical situations the expression $y = \varphi(x_1, \ldots, x_D)$ is unknown and the emphasis is on fitting the simplest model to sample or experimental data. However, in some cases, the function φ can be deduced from physical laws. One example is the rubidium-strontium method of dating Rb-minerals —based on the law of radioactivity— which uses the following function to determine the “age” t of a mineral:

$$t = \frac{1}{\lambda} \log \left[\frac{\text{Sr}^{\text{Rb}}}{\text{Sr}^{\text{Sr}}} - \xi_0 \right] + 1,$$

where Sr^{Rb}, Sr^{Sr} and Rb are, respectively, the total number of atoms of these isotopes in a unit weight of the mineral at the present time; ξ_0 is the $\text{Sr}^{\text{Sr}}/\text{Sr}^{\text{Sr}}$ ratio of strontium that was incorporated into the mineral at the time of its formation; λ is the decay constant of Rb in units of reciprocal years ($\lambda = 1.42 \times 10^{-11}$ yr$^{-1}$); and t is the time elapsed in years since the time of formation of mineral, that is, the “age” of the mineral. The number of Sr^{Sr} atoms is constant because this isotope is stable and not produced by decay of a naturally occurring isotope of another element. The function (1) is the basis for age determination by the Rb-Sr method when the mineral has remained a “closed system” with respect to rubidium and strontium, and when the assumed value ξ_0 of the initial $\text{Sr}^{\text{Sr}}/\text{Sr}^{\text{Sr}}$ ratio is appropriate. From a mathematical point of view the expression (1) is a real-valued function defined on a subset in the simplex S^3 of 3-parts $\text{Sr}^{\text{Sr}}, \text{Sr}^{\text{Sr}}, \text{Rb}$.

In the next sections we introduce the main topics on differential calculus of the vector-valued functions on the compositional space. We suppose known the terminology associated to the metric vector space structure of the compositional space C^d introduced in Barceló-Vidal et al. (2001) and the notation introduced in Aitchison et al. (2002).
2. Vector-valued functions on C^d

2.1 Scale-invariant vector-valued functions on \mathbb{R}^D_+

Let f be a vector-valued function whose domain is a subset A in \mathbb{R}^D_+ and with range contained in \mathbb{R}^m. Thus f assigns each w in A a value $f(w) = (f_1(w), \ldots, f_m(w))'$, an m-tuple in \mathbb{R}^m.

We say f is scale-invariant —or homogeneous of degree 0— if $f(kw) = f(w)$ for every positive real k, and for every w in A for which kw in A. Obviously, if a vector-valued function $f(w) = (f_1(w), \ldots, f_m(w))'$, with domain $A \subset \mathbb{R}^D_+$, is scale-invariant, its components f_1, \ldots, f_m are also real-valued scale-invariant functions on A. And inversely, if all the components f_1, \ldots, f_m are real-valued scale-invariant functions, the vector-valued function $f(w) = (f_1(w), \ldots, f_m(w))'$ is scale-invariant.

Let A be a subset of \mathbb{R}^D_+. We define the scale closure of A, denoted A^*, as the set

$$A^* = \{kw : k > 0, w \in A\}.$$

The set A is said to be scale-closed, if $A^* = A$.

It is clear that any scale-invariant vector-valued function f with domain $A \subset \mathbb{R}^D_+$ can be extended to the scale closure A^* of A. It suffices to define $f(kw) = f(w) \quad (k > 0) \ (w \in A)$. Obviously, this extended function with domain A^* is also scale-invariant. Therefore, throughout this paper, we shall implicitly suppose that the domain of any scale-invariant function is always an scale-closed subset.

Let $f : A \rightarrow \mathbb{R}^m$ be an scale-invariant vector-valued function defined on a subset A in \mathbb{R}^D_+ with values in \mathbb{R}^m. It induces a vector-valued function $\widehat{f} : \mathcal{A} = \text{ccl}A \subset C^d$. Certainly, if c is a composition which belongs to \mathcal{A}, there exists at least a vector w in A such that $c\cdot w = c$. Then, we define $f(c)$ as equal to $f(w)$. As f is scale-invariant, it is clear that $f(c)$ is univocally defined. We will denote by \widehat{f} the vector-valued function defined on $\widehat{A} = \text{ccl}A$ in C^d associated to the scalar invariant vector-function f defined on the scalar-closed subset A in \mathbb{R}^D_+. Inversely, if $\varphi : A \rightarrow \mathbb{R}^m$ is a vector-valued function defined on a set \mathcal{A} in C^d with values in \mathbb{R}^m, it can be proved that there exist an unique scale-invariant function φ defined on an scale-closed set A in \mathbb{R}^D_+, such that $\varphi = \varphi$. Therefore we can suppose that any vector-valued function defined on a set in C^d is derived from an scalar-invariant vector-valued function defined on an scale-closed set in \mathbb{R}^D_+.

2.2 C-linear functions on C^d

According to the vector space structure of (C^d, \oplus, \otimes), a vector-valued function $\varphi : C^d \rightarrow \mathbb{R}^m$ is C-linear if

$$\varphi(w \oplus w^*) = \varphi(w) + \varphi(w^*) \quad (w, w^* \in C^d),$$

and

$$\varphi(\lambda \otimes w) = \lambda \varphi(w) \quad (w \in C^d) \ (\lambda \in \mathbb{R}).$$

It can be proved that, φ is C-linear if and only if there exists a constant $m \times D$ matrix A, constrained by the equality $A1_D = 0_m$, such that $f = \varphi$, where $f : \mathbb{R}^D_+ \rightarrow \mathbb{R}^m$ is
the real-valued function defined by the expression

\[f(w) = A \log w \quad (w \in \mathbb{R}^D_+). \]

3. Derivatives on \(C^d \)

3.1 Derivative of scale-invariant vector-valued functions on \(\mathbb{R}^D_+ \)

Let \(f = (f_1, \ldots, f_m) : A \rightarrow \mathbb{R}^m \) be a vector-valued function whose domain is an open subset \(A \) in \(\mathbb{R}^D_+ \). If \(f \) is differentiable at \(w^* \in A \), we will denote by

\[
Df(w^*) = \begin{bmatrix}
\frac{\partial f_1}{\partial w_1}(w^*) & \cdots & \frac{\partial f_1}{\partial w_D}(w^*) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial w_1}(w^*) & \cdots & \frac{\partial f_m}{\partial w_D}(w^*)
\end{bmatrix}
\]

the derivative of \(f \) at \(w^* \). Therefore, this derivative is a \(m \times D \) matrix referred to as the matrix of partial derivatives of \(f \) at \(w^* \). In particular, if \(f \) is a real-valued function, its derivative at \(w^* \)

\[
Df(w^*) = \begin{bmatrix}
\frac{\partial f}{\partial w_1}(w^*) & \cdots & \frac{\partial f}{\partial w_D}(w^*)
\end{bmatrix}
\]

is called the gradient of \(f \) at \(w^* \) and denoted by \(\nabla f(w^*) \).

According to the well-known Euler’s theorem for homogeneous functions, if \(f \) is scale-invariant and differentiable at \(w^* \in A \), then

\[
\sum_{j=1}^{D} w_j^* \frac{\partial f_i}{\partial w_j}(w^*) = 0
\]

for each \(i = 1, \ldots, m \). Furthermore, \(f \) is also differentiable at \(kw^* \), for each \(k > 0 \), and

\[
\frac{\partial f_i}{\partial w_j}(kw^*) = \frac{1}{k} \frac{\partial f_i}{\partial w_j}(w^*)
\]

for each \(i = 1, \ldots, m \), and \(j = 1, \ldots, D \).

3.2 Derivative of vector-valued functions on \(C^d \)

Let \(f = (f_1, \ldots, f_m) : A \rightarrow \mathbb{R}^m \) be a scale-invariant vector-valued function whose domain is an open and scale-closed subset \(A \) in \(\mathbb{R}^D_+ \). Let \(f = (f_1, \ldots, f_m) \) be the vector-valued function defined on \(A = \text{ccl} A \) in \(C^d \) associated to function \(f \).

We say that \(f \) is \(C \)-differentiable at \(w^* \) in \(A \) if it exists a \(m \times D \) matrix \(A \), constrained by the equality \(A 1_D = 0_m \), such that

\[
\lim_{u \leq 1_D} \left\| \frac{f(w^* + u) - f(w^*) - A \log u}{\|u\|_c} \right\| = 0,
\]

where \(1_D = \text{ccl}(1, \ldots, 1)' \) is the neutral element of \((C^d, \oplus) \).
The element \((i, j)\)-th of matrix \(A\) will be referred to as the \(C\)-partial derivative of \(f_i\) with respect to the \(j\)-th coordinate at \(w^*\), and is denoted by \(\frac{\partial c f_i}{\partial w_j}(w^*)\). It is easy to prove that

\[
\frac{\partial c f_i}{\partial w_j}(w^*) = \lim_{t \to 0} \frac{f_i(w_i^*, \ldots, w_j^* + t, w_{j+1}^*, \ldots, w_D^*) - f_i(w^*)}{t}
\]

From this interpretation of the \(C\)-partial derivatives, it is not difficult to prove that \(f\) is \(C\)-differentiable at \(w^*\) in \(A\) if and only if \(f\) is differentiable at \(w^*\) in \(A\). Furthermore, the \(C\)-partial derivatives of \(f\) at \(w^*\) and the partial derivatives of \(f\) at \(w^*\) are related by the equality

\[
\frac{\partial c f_i}{\partial w_j}(w^*) = w_j^* \frac{\partial f_i}{\partial w_j}(w^*),
\]

for each \(i = 1, \ldots, m\), and \(j = 1, \ldots, D\).

The matrix

\[
A = \begin{bmatrix}
\frac{\partial c f_1}{\partial w_1}(w^*) & \cdots & \frac{\partial c f_1}{\partial w_D}(w^*) \\
\cdots & \cdots & \cdots \\
\frac{\partial c f_m}{\partial w_1}(w^*) & \cdots & \frac{\partial c f_m}{\partial w_D}(w^*)
\end{bmatrix}
\]

will be referred to as the matrix of \(C\)-partial derivatives of \(f\) at \(w^*\) and will be denoted by \(D_c f(w^*)\).

In particular, if \(f\) is a real-valued function, the matrix of \(C\) – partial derivatives of \(f\) at \(w^*\)

\[
D_c f(w^*) = \begin{bmatrix}
\frac{\partial f}{\partial w_1}(w^*), & \cdots, & \frac{\partial f}{\partial w_D}(w^*)
\end{bmatrix}
\]

is called the \(C\)-gradient of \(f\) at \(w^*\) and denoted by \(\nabla_c f(w^*)\). The first-order Taylor approximation of \(f\) in a neighbourhood of \(w^*\) is given by

\[
f(w^*; u) = f(w^*) + \sum_{j=1}^{D} \left(\frac{\partial f}{\partial w_j}(w^*) \right) \log u_j + R_1(w^*, u),
\]

where \(u = c(u_1, \ldots, u_D)'\), and \(R_1(w^*, u)/\|u\| \to 0\) in \(\mathbb{R}\) as \(u \to 1_D\) in \(C^d\).

4. Directional derivatives on \(C^d\)

Let \(f : \mathbb{R}_+^D \to \mathbb{R}\) be a scale-invariant real-valued function defined on \(\mathbb{R}_+^D\) and \(f\) be the real-valued function defined on \(C^d\) associated to function \(f\). Let \(w^*, u \in C^d\).

Then, the \(C\)-directional derivative of \(f\) at \(w^*\) along the direction \(u\) is given by

\[
\left(\frac{df(w^* + (t \otimes u))}{dt} \right)_{t=0}
\]

if this exists. From this definition, it is no difficult to prove that the \(C\)-directional derivative can also be defined by the formula

\[
\lim_{t \to 0} \frac{f(w^1 u_1^t, \ldots, w^D u_D^t) - f(w^1, \ldots, w^D)}{t}
\]
If f is differentiable, then all \mathcal{C}-directional derivatives of f exist. Furthermore, the \mathcal{C}-directional derivative at $\mathbf{w}^* \in \mathcal{C}^d$ along the direction $\mathbf{u} \in \mathcal{C}^d$ is given by

$$
\sum_{j=1}^D w_j^* \frac{\partial f}{\partial w_j}(\mathbf{w}^*) \log u_j = \nabla_{\mathcal{C}} f(\mathbf{w}^*) \log \mathbf{u}.
$$

Therefore, if $\nabla_{\mathcal{C}} f(\mathbf{w}^*) \neq 0$, the composition $\text{ccl} \left\{ \exp \left(\nabla_{\mathcal{C}} f(\mathbf{w}^*) \right) \right\}$ points in the direction along which f is increasing the fastest in a \mathcal{C}-neighbourhood of \mathbf{w}^*.

We can deduce from (2) that the \mathcal{C}-directional derivative of f at $\mathbf{w}^* \in \mathcal{C}^d$ along the direction

$$
\mathbf{u}_j = \text{ccl}(1, \ldots, 1, e, 1, \ldots, 1)^T (j = 1, \ldots, D)
$$

is equal to

$$
\frac{\partial f}{\partial w_j}(\mathbf{w}^*) = w_j^* \frac{\partial f}{\partial w_j}(\mathbf{w}^*). \tag{3}
$$

If the \mathcal{C}-directional derivative of f along the direction \mathbf{u}_j is equal to 0 on \mathcal{C}^d, we say that f is \mathcal{C}-independent of the j-th part. It is clear from (3) that f is \mathcal{C}-independent of the j-th part if and only if f does not depend of the j-th coordinate w_j on \mathbb{R}_+^B.

5. Example

The function (1) giving the “age” t of a mineral from the $^{87}\text{Sr}/^{86}\text{Sr}$ and $^{87}\text{Rb}/^{86}\text{Sr}$ ratios can be interpreted as a scale-invariant real-valued function f

$$
\left(^{86}\text{Sr}, ^{87}\text{Sr}, ^{87}\text{Rb} \right) \rightarrow \frac{1}{\lambda} \log \left[\frac{^{87}\text{Sr}}{^{86}\text{Sr}} - \xi_0 \right] + 1
$$

defined on

$$
A = \left\{ \left(^{86}\text{Sr}, ^{87}\text{Sr}, ^{87}\text{Rb} \right) \in \mathbb{R}_+^3 : \frac{^{87}\text{Sr}}{^{86}\text{Sr}} - \xi_0 \geq 0 \right\}.
$$

Therefore, the function f induces a real-valued function \bar{f} defined on $A = \text{ccl} A \subset \mathcal{C}^2$. This function \bar{f} can also be interpreted as a function on the simplex S^3. Figure 1 shows some level contours of this function for $\lambda = 1.42 \times 10^{-11}$ and $\xi_0 = 0.7071$. The projections of these level contours on the simplex are straight segments from a common point on the $^{86}\text{Sr} - ^{87}\text{Sr}$ edge.

The \mathcal{C}-gradient of \bar{f} at $\mathbf{w} = \text{ccl} \left(^{86}\text{Sr}, ^{87}\text{Sr}, ^{87}\text{Rb} \right)^T$ is equal to

$$
\nabla_{\mathcal{C}} f(\mathbf{w}) = \frac{1}{\lambda} \left[\frac{^{87}\text{Sr}}{^{86}\text{Sr}} - \xi_0 \right] - \xi_0 \left[\frac{^{87}\text{Sr}}{^{86}\text{Sr}} - \xi_0 \right] - \xi_0 \left[\frac{^{87}\text{Sr}}{^{86}\text{Sr}} - \xi_0 \right] \tag{4}
$$

From (4) we deduce that $\frac{\partial f}{\partial ^{87}\text{Sr}}(\mathbf{w})$ is always positive in each $\mathbf{w} \in A$. It means that the “age” of a mineral increases when ^{87}Sr increases and the $^{87}\text{Rb}/^{86}\text{Sr}$ ratio remains constant. Similarly, the \mathcal{C}-partial derivative $\frac{\partial f}{\partial ^{87}\text{Rb}}(\mathbf{w})$ is negative in each \mathbf{w} in the \mathcal{C}-interior of A. Therefore, the “age” of a mineral decreases when ^{87}Rb increases and the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio remains constant.
Any of the three dotted paths in Figure (1) represents in each point the direction in which the values of function f change most rapidly, showing the evolution of the (^{86}Sr-^{87}Sr-^{87}Rb)-composition of a mineral from the time of its formation.

Figure 1: Level contours ($t = 0; 10 \times 10^6; 50 \times 10^6; 100 \times 10^6; 150 \times 10^6; 200 \times 10^6$ years) of the function $t = \frac{1}{1.42 \times 10^{-6}} \log \left[\frac{87\text{Rb}}{87\text{Sr}} - 0.7071 \right] + 1$ on the simplex of 3-parts ^{86}Sr-^{87}Sr-^{87}Rb. The dotted lines show the evolution of the (^{86}Sr-^{87}Sr-^{87}Rb)-composition of three minerals from the time of their formation.

References
