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Abstract: The application of hierarchic methods of classification needs to es-
tablish in advance some or all of the following measures: difference, central
tendency and dispersion, in accordance with the nature of the data. In this work,
we present the requirements for these measures when the data set to classify is a
compositional data set. Specific measures of difference, central tendency and
dispersion are defined to be used with the most usual non-parametric methods
of classification.
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1. Introduction

Any vector x = ( ,..., )x xD1  with non-negative elements x xD1, ...,  representing
proportions of some whole is subject to the unit-sum-constraint x xD1 1+ + =... .
Compositional data, consisting of such vectors of proportions (compositions),
play an important role in many disciplines. Frequently, some form of statistical
analysis is essential for the adequate analysis and interpretation of the data.
Nevertheless, all too often the unit-sum-constraint is either ignored or improp-
erly incorporated into the statistical modelling giving rise to an erroneous or
irrelevant analysis. The purpose of this paper is to revise the specific statistical
requirements of standard hierarchic agglomerative classification methods when
they are performed on compositional data.

In the next section we present the ideas proposed by Aitchison (1992)
about the conditions that have to be satisfied by any distance between two com-
positions, and by any measure of central tendency and dispersion of a composi-
tional data set. Next, we propose a modification of the most standard hierarchic
agglomerative classification methods to make them suitable for the classifica-
tion of a compositional data set. Finally, we present two examples where the
proposed methodology is applied to simulated compositional data sets.



2. Statistical analysis of compositional data

If a vector w = ∈ℜ( ,..., )w wD
D

1 with non-negative components is composi-
tional, we are implicitly recognising that the total size w wD1+ +...  of the compo-
sition is irrelevant. Therefore, a suitable sample space for compositional data is
the unit simplex

{ }SD
D j Dx x x j D x x−1

1 10 1 1 = ( ,..., ) : > ( = ),  +...+ = ,  , ...,

and any meaningful function f of a composition must be invariant under the
group of scale transformations; i.e. ( )f f( )λw w= , for every λ>0. Note that
only functions expressed in terms of ratios of the components of the composi-
tion satisfy this condition (Aitchison, 1992).

As an analogy to the role played by the group of translations when the
sample space is the real space ℜD , Aitchison (1986, Section 2.8) introduces the
group of perturbations as a means to characterize the `difference' between two
compositions. If we denote the perturbation operation by ` '� , then the perturba-
tion p S= ∈ −( ,..., )p pD

D
1

1  applied to a composition x  produces the new com-
position

p x� = �( ,..., ) .p x p x p xD D j
j

j1 1

If x x* S, ∈ −D 1 are two compositions it is easy to prove that the perturbation

x * x-1
� = �( * / , ..., * / ) * / ,x x x x x xD D j

j
j1 1

moves x  to x*.

2.a Distance between two compositions
The requirements which any scalar measure of distance between two composi-
tions should verify, according to the definitions given by Aitchison (1992), are
scale invariance, permutation invariance, subcompositional dominance and
perturbation invariance. These requirements are sensible, as they acknowledge
the compositional nature of the data. A feasible distance between two composi-
tions x x* S, ∈ −D 1  is given by

∆(x x*) =, log log
*
*
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which is equivalent to the distance proposed by Aitchison (1992). Using the
definition of centred logratio transformation ( clr ) from SD−1 to ℜD given by



clr(x) =
x x

log
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where g( )x  is the geometric mean of the composition x , it is easy to establish
that

∆(x x*) = x x*, (deu clr( ), clr( )),                 (4)

where deu  represents the euclidean distance. Moreover, since clr( )p x� =
clr( ) +  clr( )p x , for any p x S, ∈ −D 1 , it is clear that the distance (4) is perturba-
tion invariant.

2.b Measure of central tendency of a compositional data set
If { }X x S 1 = = ( ,..., )i x x i Ni iD

D
1 1∈ =- : , ....,  represents a set of compositions,

the arithmetic mean X  of the data set is usually not representative of the ‘cen-
tre’ of the set, and neither is compatible with the group of perturbations. Aitchi-
son (1997) proposes the geometric mean cen( )X  as more representative of the
central tendency of a compositional data set. It is defined as

cen( ) ( ,..., )
...

,X =
+ +

g g
g g

D

D

1

1

(5)

where g xj ij
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 is the geometric mean of the  jth component of the data

set. Figure 1 shows the ternary diagram of a simulated data set (adapted from
Aitchison, 1986, data set 1) where it can be observed that the geometric mean
lies inside the bulk of data, while the arithmetic mean lies slightly apart.

Figure 1: Data set in the simplex (geometric mean =  (0.6058, 0.2719, 0.1223)
and arithmetic mean =  (0.54, 0.2756, 0.1844) )
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It is easy to prove that cen( ) cen( )p X p X� �=  for any perturbation
p S∈ −D 1 , and that clr(cen( )) clr(X X)= . Therefore, it will be true that

∆(x X ) = x X, ( ) (cen clr( ), clr( )).deu      (6)

2.c Measure of dispersion of a compositional data set
It is sensible to assume that any measure of dispersion of a compositional data
set should be invariant under the group of perturbations. The measure of disper-
sion defined by Aitchison (1992,1997) satisfies this condition; it is based on the
trace of the covariance matrix of the centred logratio transformed compositions.
In accordance with his definition, a measure of total variability of a composi-
tional data set X  can be defined as

totvar( )X
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. It is easy to prove that
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which proves that the proposed measure of total variability (7) is compatible
with the distance defined in (2). It can also be proved that
totvar( ) totvar( )p X X� = , for any perturbation p S∈ −D 1 , which proves that the
measure of total variability (7) is invariant under perturbations.

3. Hierarchic cluster analysis of compositional data

Before applying any hierarchic method of classification to a data set, it is neces-
sary to establish in advance some or all of the following measures: of differ-
ence, central tendency and dispersion, to be used in accordance with the nature
of the data. Therefore, if we are using a hierarchic method to classify a compo-
sitional data set, we have to take into account that all these measures must be
invariant under the group of scale transformations. It is clear that the definitions
given in (2), (5) and (8) are scale-invariant, while the euclidean distance is not.
Therefore, from this point of view, it is wrong to use the euclidean distance
between two compositions to calculate the matrix of distances associated with
hierarchic methods like single linkage, complete linkage and average linkage.
We propose to use the distance defined in (2). By property (4), this distance is
equivalent to the euclidean distance between the compositions transformed by



the centred logratio transformation clr defined in (3).
Likewise, any method of classification which reduces the distance from

a composition to a set of compositions to the distance between the composition
and the `centre' of the group, has to take into account the considerations made in
the previous section 2.b. We propose to use (5) as a definition of the `centre' of
a set of compositions, in addition to the distance defined in (2). Then, by prop-
erty (6), it is easy to conclude that the centroid classification method can be
used if it is applied to the data transformed by the centred logratio transforma-
tion.

On the other hand, the well-known method of Ward is a hierarchic
method which uses the measure of dispersion to classify the data. In essence,
this method is based on the concept of variability on a cluster C. This variability
is defined by the sum ( )d CeuC

2
x

x
∈� ,  (see Everitt, 1993, Section 5.2), where C

denotes the centre of the class. When the data set is compositional, we suggest
replacing the squared Euclidean distance ( )d Ceu

2 x, , which appears in the previ-

ous sum, by ( )∆ eu C2 x, ( )cen  defined in (2). Then, by definition (7) and property
(8), the variability of a cluster C of compositions will be equal to totvar( )C .
Thus, modifying the method of Ward to make it suitable for the classification of
a compositional data set X  is equivalent to applying the standard procedure to
clr( )X .

4. Two examples

Consider the 50 points plotted on a ternary diagram in Figure 2a, corresponding
to a simulated compositional data set X1 characterised by three components.
Samples belong to two groups obtained one from the other by the application of
a perturbation. Figure 3a shows the ternary diagram of a second simulated data
set X2 (adapted from Aitchison, 1986, data set 1) with 50 elements, which has
been generated and labelled in a similar manner. Figures 2b-3b show the plots
in ℜ3  of the clr- transformed data set clr(X1) and clr(X2), respectively. In each
case, original groups are separated by a line and the groups resulting of a cluster
method are distinguished by a different symbol.

As can be observed, original groups show no overlapping neither in S2

nor in ℜ3  but, while Figures 3a and 3b show also a clear visual separation of
the two groups, this is not the case for the data represented in Figure 2a and 2b.
For the sake of comparison, different standard classification methods have been
applied to the four sets using the Euclidean distance. Misclassification rates are
listed in Table 1.



Figure 2: Example 1 (a) Plot in the simplex (groups from Ward's method) (b)
clr-transformed set (groups obtained using single linkage) ); classification re-
sults distinguished by symbols '+' and 'o'.
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Figure 3: Example 2  (a) Plot in the simplex (groups obtained using single link-
age)  (b) clr-transformed set (groups from Ward's method); classification re-
sults distinguished by symbols '+' and 'o'.
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Table 1 Misclassification rates on the two examples

Example 1 Example 2
Method X1 clr(X1) X2 clr(X2)

Single Linkage 48% 12%   0%   8%
Ward 50%   6%   8% 50%
Complete Linkage 22%   6% 42% 50%
Centroid 48%   6% 42% 50%
Average Linkage 50%   6% 28% 50%

As could be expected, a poor classification power is obtained for X1,
because the two groups are close from an euclidean point of view (only the
complete linkage method gives an acceptable classification). However the clas-
sification power seems to be reasonable for clr(X1), because only the three ele-



ments close to the border are misclassified. For clr (X1) the poorest result is
obtained when the single linkage is used. Figure 4 shows the associated den-
drogram. The samples of the first group are labelled from 1 to 25, while the
others are labelled from 26 to 50. This dendrogram is similar to the den-
drograms associated to the others methods whit only one difference: composi-
tions labelled by 34, 47 and 48 are considered by the single linkage method as
separated groups (see Figure 2(b)).

Figure 4: Dendrogram of the single linkage method applied to  clr (X1).
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Results are more striking for X2 and clr(X2), given the clear
separation between groups both in the simplex and in real space: only single
linkage and Ward's methods show a high classification power for X2, while
complete linkage, centroid and average linkage methods have a poor classifica-
tion power. They work still worse when applied to clr(X2) because the two
groups are parallel and elongated. Figure 5(b) shows the associated dendrogram
when the single linkage method is applied to the data set clr(X2). Numbers
from 1 to 25 correspond to the first group and 26 to 50 to the second.  It can be
observed that the almost all samples are well classified: only observations la-
belled 10 and 17, and observations 35 and 42 are misclassified as separated
groups (see Figure 5(a)).

Figure 5: Single linkage method applied to  clr (X2): (a) Plot (b) Dendrogram
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5. Conclusions

• There are theoretical objections to the application of the standard hierarchic
classification methods to compositional data sets because they don't take into
account the nature of this kind of data.

• To classify a compositional data set, we suggest adapting the usual hierarchic
methods using the definitions of distance, centre and variability defined in
(2), (5), and (7), which are compatible with the compositional nature of the
data. This is equivalent to applying standard methods to the centred logratio
transformed data set.

• Further research is needed to understand more thoroughly the performance of
modified standard parametric classification methods when they are applied to
compositional data.
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