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Abstract: Compositional time series, i.e., multivariate time series of vectors of D
proportions, arise in many areas of application where the focus of attention is on
the relative, rather than the absolute, values of their components. Such series are
characterized by components which are positive and sum to one at each instance
in time. Although data of this type constitute multivariate time series, standard
modelling techniques are not applicable due to the positivity of the components
and the constant sum constraint. In other words, problems arise because its
sample space is not the D-dimensional real space, nor the positive real space, but
the (D−1)-dimensional simplex space. We consider basic concepts regarding the
Euclidean structure of the simplex, and the alr, clr and ilr transformations on it
are introduced to present compositional ARIMA models.
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1 The simplex SD as a compositional space

1.1 The simplex as a real vector space

A D-part composition x = (x1, . . . , xD)′ is any element of the simplex

SD = {(x1, . . . , xD)′ : x1 > 0, . . . , xD > 0; x1 + . . . + xD = 1}.
Basic operations on SD have been introduced by Aitchison (1986) and
Barceló-Vidal et al (2002). The perturbation operation is defined as

x⊕ x∗ = C(x1x
∗
1, . . . , xDx∗D)′ for any x,x∗ ∈ SD,

and the power transformation, defined for any x ∈ SD and α ∈ IR as

α¯ x = C(xα
1 , . . . , xα

D)′,

where C denotes the closure operator defined for any z ∈ IRD
+ as Cz =

z/
∑D

i=1 zi. In this manner (SD,⊕,¯) becomes a real vector space of di-
mension D − 1. The composition 0C = (1/D, . . . , 1/D)′ is the neutral
(zero) element, and the inverse (opposite) of x ∈ SD is the composition
x−1 = C(1/x1, . . . , 1/xD)′.
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Provided that (SD,⊕,¯) is a real vector space, it can be viewed as an
affine space when the group (SD,⊕) operates on SD as a group of trans-
formations. Perturbations in the compositional space plays the same role
as translations plays in the real space. The assumption that the group of
perturbations is the operating group on the compositional space is the key-
stone of the methodology introduced by Aitchison (1986). In fact, it means
accepting that the ”difference” between two compositions x and x∗ is the
composition x ª x∗ = C(x1/x∗1, . . . , xD/x∗D)′, based on the ratios xj/x∗j
between parts instead of on the subtraction x∗j − xj .

1.2 Transformations on the simplex

Let AD×D denote the family of all real D ×D matrices such that A1D =
A′1D = 0D. Let x ∈ SD and A ∈ AD×D. We define the product A¯ x as

A¯ x = C



D∏

j=1

x
a1j

j , . . . ,

D∏

j=1

x
aDj

j



′

.

The function x → A ¯ x is an endomorphism of the vector space
(SD,⊕,¯). Moreover, any endomorphism of SD can be written in this
form. The matrix associated to identity endomorphism is the well-known
centering matrix GD = ID −D−1JD of order D ×D.
The additive logratio transformation of index j (j = 1, . . . , D) —denoted
by alrj— is the one-to-one transformation from SD to IRD−1 defined as
x −→ y = alrj x = log(x−j/xj) where x−j denotes the vector x with the
component xj deleted. In particular, we use alr —without any subindex—
to denote the transformation alrD. The inverse transformation of alrj is
the well known additive logistic transformation.
The centered (or symmetric) logratio transformation —denoted by clr— is
the function from the compositional space SD to IRD, defined by x −→ z =
clrx = log (x/g(x)), where g(x) is the geometric mean of the components
of x, i.e., g(x) = (x1x2 . . . xD)1/D. This transformation maps SD in the
subspace V = {z ∈ IRD : z1 + . . .+zD = 0} of IRD, which can be seen to be
a hyperplane through the origin of IRD, orthogonal to 1D (vector of units).
This subspace has dimension D− 1. Let v1, . . . ,vD−1 be any orthonormal
basis of V , and let V be the D× (D−1) matrix [v1 : . . . : vD−1]. Then, the
isometric logratio transformation —denoted by ilrV — associated with this
matrix V, is the one-to-one transformation from SD to IRD−1 which assigns
to each composition x the components of clrx in the basis v1, . . . ,vD−1 of
V . It can be proved that x −→ u = ilrV x = (FV)−1F log x, for any x ∈
SD, where F is the (D − 1)×D matrix [ID−1 : −1D−1].
It is very important to emphasize that all these transformations —alrj , clr,
ilrV , and its inverses— are one-to-one linear transformations between the
compositional vector space (SD,⊕,¯) and the real vector space (IRD−1,+, .)
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(or V ⊂ IRD) with the natural structure. Vectors u = ilrV x, y = alrD x
and z = clrx associated with the same composition x ∈ SD are related by
the following linear relationships expressed in matrix form:

1. u = (FV)−1y, and u = (FV)−1Fz.

2. y = FVu, and y = Fz.

3. z =
(
(FV)−1F

)′
u, and z = F′H−1y, where H is the (D − 1) ×

(D − 1) matrix FF′ = ID−1 + JD−1, with JD−1 = 1D−11′D−1.

1.3 The simplex as a metric space

The one-to-one linear transformation clr allows one to transfer the real
Euclidean structure defined on IRD−1 to SD . Thus the compositional norm
(C-norm) of x ∈ SD is equal to the Euclidean norm in IRD of the clr-
transformed vector, i.e., ‖x‖C = ‖clrx‖, and the C-distance between two
compositions x,x∗ ∈ SD is given by the C-norm of the difference x ª
x∗. Thus the C-distance just defined converts SD into a Euclidean space
and the transformation clr is the natural isometry between SD and the
subspace V of IRD. Moreover, as the D − 1 columns of matrix V used in
the transformation ilrV constitute, by definition, an orthonormal basis of
V , this transformation is also an isometry between SD and IRD−1. The
same cannot be said for the additive logratio transformations alrj .

1.4 The covariance structure of the simplex

Let x be a random D-part composition defined on SD. According to the
metric structure defined on SD, the C-mean of x, symbolized by ξ or EC{x}
, is defined as ξ = clr−1E{clrx} and the C-covariance matrix ΣC of x as

ΣC =
[
cov

{
log

xi

g(x)
, log

xj

g(x)

}]
=

[
σCij

]D

i,j=1
,

i.e., by the covariance matrix ΣZ of the random vector z = clrx, known
as centred logratio matrix. The consequent singularity of the distribution
z = clrx is reflected in the singularity of ΣC , since ΣC1D = 0D.
Aitchison (1986) defines other matrices to determine the C-covariance struc-
ture of a random composition x. The variation matrix T is defined as

T = [var {log (xi/xj)}]Di,j=1 = [τij ]
D
i,j=1 ,

and the logratio covariance matrix ΣY as

ΣY =
[
cov

{
log

xi

xD
, log

xj

xD

}]D−1

i,j=1

=
[
σYij

]D−1

i,j=1
,
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i.e., by the covariance matrix of the random vector y = alrx on IRD−1. It is
clear that ΣY will depend on the denominator used in the alr-transformation.
Finally, the covariance matrix of the random vector u = ilrx on IRD−1

will be denoted by ΣU =
[
σUij

]D−1

i,j=1
. This covariance matrix will depend

on the matrix V used in the ilr-transformation. Although the C-covariance
structure of x is given by ΣC , the relationships between all these matrices
allow one to deduce ΣC from any of the other matrices.

1.5 Joint distribution on the simplex

Let (x1,x2) be a bivariate random compositional vector defined on SD ×
SD. If ξi = EC{xi} (i = 1, 2), the C-covariance matrix ΓC(x1,x2) =[
γCij

]D

i,j=1
of (x1,x2) is defined as

ΓC(x1,x2) =
[
E

{(
log

x1i

g(x1)
− log

ξ1i

g(ξ1)

)(
log

x2j

g(x2)
− log

ξ2j

g(ξ2)

)}]D

i,j=1

.

Therefore, ΓC(x1,x2) coincides with the covariance matrix ΓZ(z1, z2) of
(z1, z2) = (clrx1, clrx2) defined on V × V ⊂ IRD × IRD. The matrix
ΓC(x1,x2) is not symmetric but is singular because ΓC1D = (ΓC)′1D = 0D.
We denote by ΓY(y1,y2) =

[
γYij

]D−1

i,j=1
the covariance matrix of (y1,y2) =

(alrx1, alrx2), and by ΓU (u1,u2) =
[
γUij

]D−1

i,j=1
the covariance matrix of

(u1,u2) = (ilrx1, ilrx2). As before, there exists matrix relationships be-
tween the covariance matrices ΓC , ΓY and ΓU .

2 Compositional time series models

Let xt = (xt1, . . . , xtD)′, t = 0,±1,±2, . . . be a compositional process (C-
time series process) defined on SD for any t. The compositional second-
order properties of xt are then specified by the C-mean vectors, ξt =
EC{xt} = (ξt1, . . . , ξtD)′, and the C-autocovariances matrices,

ΓC(t+h, t) = E
{(

clrxt+h − clr ξt+h

)
(clrxt − clr ξt)

′} =
[
γCij(t + h, t)

]D

i,j=1
,

which belong to the family of AD×D matrices.
Notice that in the compositional context, given a C-time series {xt} it
makes no sense to analyze any of the individual parts {xti} as univariate
time series. However, in some cases one might be interested in analyzing
the relative behavior of two parts i and j (i 6= j) or, in general, of a sub-
compositional time series {xSt}, where S symbolizes any subset of two or
more parts 1, . . . , D of xt.
The clr, alr and ilr transformations applied to a compositional process {xt}
induce three processes {zt}, {yt} and {ut}, respectively. The former, {zt},
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defined on IRD, is restricted to the hyperplane V because z′t1D = 0. The
other two time series processes are defined on IRD−1 but {yt} depends on
the denominator used in the alr-transformation and {ut} on the matrix
V used in the ilr-transformation. We denote by µZt , µYt and µUt the mean
vectors of {zt}, {yt} and {ut}, respectively, and by ΓZ(t+h, t),ΓY(t+h, t)
and ΓU (t+h, t) the autocovariance matrices of these time series processes.
Observe that, by definition, µZt = clr ξt and ΓZ(t + h, t) = ΓC(t + h, t).
The mean vectors µYt and µUt , and the covariance matrices ΓY(t+h, t) and
ΓU (t + h, t) are related to clr ξt and ΓC(t + h, t) by the equations given in
2.2.

2.1 Stationary C-time series processes

The C-time series process {xt} is said to be (weakly) C-stationary if ξt and
ΓC(t + h, t), h = 0,±1, . . . are independent of t. For a C-stationary process
we use the notation

ξ = EC{xt} ; ΓC(h) = E {(clrxt+h − clr ξ)(clrxt − clr ξ)′} =
[
γCij(h)

]D

i,j=1
.

We shall refer to ξ as the C-mean of {xt} and to ΓC(h) as the C-autocova-
riance at lag h, and ΓC(h)h=0,1,... as the C-autocovariance function. The
C-autocorrelation function R(h)h=0,1,... is defined by

RC(h) =
[
γCij(h)/

√
γCii(0)γCjj(0)

]D

i,j=1
=

[
ρCij(h)

]D

i,j=1
.

The C-time series process {wt} is said to be C-white noise with C-mean
0C = (1/D, . . . , 1/D)′ and C-covariance matrix ΣC —written as {wt} ∼
WNC(0C ,ΣC)— if and only if {wt} is C-stationary with C-mean vector 0C
and C-autocovariance function

ΓC(0) = ΣC ; ΓC(h) = 0D×D, if h 6= 0.

The C-stationary property of {xt} is equivalent to the stationary property
of any of the transformed processes {zt}, {yt} and {ut}. Moreover, {xt} is
C-white noise if and only if {zt} —or {yt}, or {ut}— is white noise.

2.2 C-ARIMA processes

A SD-variate C-time series process {xt} is a C-ARMA(p, q) process if

(xt ª ξ)ª (Φ1 ¯ (xt−1 ª ξ))ª . . .ª (Φp ¯ (xt−p ª ξ)) =
wt ª (Θ1 ¯wt−1)ª . . .ª (Θq ¯wt−q) ,
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where Φ1, . . . ,Φp,Θ1, . . . ,Θq areAD×D-matrices and wt ∼ WNC(0C ,ΣC).
These equations can be written in the more compact form

ΦC(LC)(xt ª ξ) = ΘC(LC)wt, {wt} ∼ WNC(0C ,ΣC),

where ΦC(z) = GDª(Φ1¯z)ª. . .ª(Φp¯zp) and ΘC(z) = GDª(Θ1¯z)ª
. . .ª (Θq ¯ zq) are AD×D-matrix-valued polynomials, GD is the centering
matrix and LC the backshift operator. In the compositional context, the
operator 1 − LC represents the C-difference operator, i.e., (1 − LC)xt =
xt ª xt−1. Applying 1 − LC to {xt} is equivalent to apply 1 − L to the
transformed processes {zt}, {yt} and {ut}.
If {xt} is C-ARMA(p, q) process then {zt} is an ARMA(p, q) process be-
cause

ΦZ(L)
(
zt − µZ

)
= ΘZ(L)wZ

t , {wZ
t } ∼ WN(0D,ΣZ) ,

where ΦZ(z) = ID −∑p
i=1 Φiz

i; ΘZ(z) = ID − (∑q
i=1 Θiz

i
)
; and ΣZ =

ΣC . Equally, {yt} will be an ARMA(p, q) process because

ΦY(L)
(
yt − µY

)
= ΘY(L)wY

t , {wY
t } ∼ WN(0D−1,ΣY) ,

where

ΦY(z) = ID−1−
(

p∑

i=1

FΦiF′H−1zi

)
, ΘY(z) = ID−1−

(
q∑

i=1

FΘiF′H−1zi

)

and ΣY = FΣCF′. And {ut} will be an ARMA(p, q) process because

ΦU (L)
(
ut − µU

)
= ΘU (L)wU

t , {wU
t } ∼ WN(0D−1,ΣU ) ,

where ΦU (z) = ID−1−
(∑p

i=1 U′ΦiUzi
)
; ΘU (z) = ID−1−

(∑q
i=1 U′ΘiUzi

)

—with U = F′H−1FV—; and ΣU = (FV)−1FΣC (
(FV)−1F

)′.
If d is a non-negative integer, it is natural to define {xt} as a C-ARIMA(p, d, q)
processes if (1−LC)dxt is a C-ARMA(p, q) processes. This definition means
that {xt} satisfies a C-difference equation of the form

ΦC(LC)(1− LC)dxt = ΘC(LC)wt, {wt} ∼ WNC(0C ,ΣC),

where ΦC(z) = GD ª (Φ1¯ z)ª . . .ª (Φp¯ zp) and ΘC(z) = GD ª (Θ1¯
z)ª . . .ª (Θq ¯ zq) are AD×D-matrix-valued polynomials.
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