A MEASURE OF DIFFERENCE FOR COMPOSITIONAL DATA BASED
ON MEASURES OF DIVERGENCE

J. A. Martin-Fernandez"), M. Bren®, C. Barcelé6-Vidal and V. Pawlowsky-
Glahn®

(1) Universitat de Girona (3) Universitat Politécnica de Catalunya
Escola Politecnica Superior E.T.S. de Eng. de Camins, Canals i Ports
Dept. d’Informatica i Matem. Aplicada Dept. de Matematica Aplicada IIT
Avda. Lluis Santald, s/n, 17071 Girona E-08034 Barcelona
SPAIN SPAIN

ABSTRACT

For the application of many statistical methods it is necessary to establish the measure of
difference to be used. This measure has to be defined in accordance with the nature of the
data. In this study we propose a measure of difference when the data set is compositional.
We analyze its properties and we present examples to illustrate its performance.

1. INTRODUCTION

It is well known that the usual dissimilarities and distances are inadequate to measure
the difference between two compositonal data (see [6] for further details). In [2] Aitchison
proposes that a suitable measure of difference defined on the simplex S” should verify
two essential requirements: perturbation invariance and subcompositional dominance.

One of the most widely used measures of divergence between two multinomial prob-
ability distributions is the Kullback-Leibler information number. The purpose of this
paper is to propose a measure of difference between two compositional data based on the
Kullback-Leibler divergence.

In the next section we define the new measure, we analyze its propierties, and we show
that the compositional requirements are verified. Then we expose an interpretation of the
measure and present an example to illustrate its performance.

2. MEASURE OF DIFFERENCE BETWEEN TWO COMPOSITIONS

In [2] Aitchison proposes that any scalar measure of difference between two compositions
x,x* € SP can be expressed in terms of the ratios of the components. More accurately,
a suitable measure of difference should be a function of the compositions x o x* ! and
x* o x~! where “o” simbolizes the perturbation operation introduced in [1]. We call
these compositions as the perturbation differences between x and x*. Note that to the
special case x = x* we obtain the perturbation difference x o x*~' = e, where e =
(1/D, 1/D, ..., 1/D) is the center of the simplex S”.

It is well knwon that a suitable measure is the distance d4 (squared) called Aitchison
distance

d4(x,x*) = D -dy(clr(x), clr(x*)), (1)

where dp represents the Euclidean distance and clr the clr-transformation (see [1] for more
details). Because the distance d4 is perturbation invariant we can express (1) as function



of the perturbation differences

& (x,x") = = (d4(e,x ox7") + & (e,xox"7"))

= = (d} (clr(e), clr(x* ox ")) + di (clr(e), clr(xox* 1))).  (2)

On the other hand, we can express the Kullback-Leibler information number (see [5])
between two compositonal data x,x* € SP as the expression

I(x,x") = gxk log <i—i> (3)

In equation (3) the factor log(zy/x}) is interpreted as the information gain in predicting
the event Ej whose probability is z by the estimation x}. Then, Z(x,x*) is the average
information gain given by D events E; (kK = 1,2,...,D). In [3], [8] and [9] related
measures for compositional data can be found.

By analogy to the equation (2) we can define on 8P a measure of difference based on
the K-L index (3) as

D
di(x,x*) = Bl

(Z(e,x*ox7") —|—I(e,xox*_1)) : (4)
Consequently d is a measure proportional to the average information gain of D events
E; (k = 1,2,...,D) whose probability is 1/D by the estimation of the components of
the perturbation differences. Actually it is possible to expand the definition (4) to other
measures of divergence.

Then, we can prove that the measure of difference dy verifies the following properties

Pl. di(x,x*) = Llog (A(x/x*) - A(x*/x)), where A(x/x*) simbolizes the arithmetic

mean of the vector of ratios x/x* = (‘”—1, L2, ‘”?).
Il 1’2 l’D

P2. Definite: dy(x,x*) >0, Vx,x* € 8P, and, di(x,x*) =0 < x = x*.
P3. Symmetry: dg(x,x*) = dg(x*,x), Vx,x* e SP.
P4. Perturbation invariance: dy(p o x,p o x*) = di(x,x*), Vx,x* p € SP.

P5. Subcompositional dominance: dg(xs,x*s) < dg(x,x*), Vx,x* € S, for any sub-
composition with s components.

Therefore the measure dy defined in (4) is a definite dissimilarity (see [4]) that verifies all
the compositional requirements.

3. COMPOSITIONAL PERFORMANCE

A composition can be understood as the vector of probabilities associated to a multino-
mial distribution, and thus as a probability statement about a finite number of possible
states or hypotheses. Consequently, the counterpart of a subcomposition is a conditional
multinomial distribution or a conditional probability statement on a subset of the states.



Therefore, compositional dominance could be a desirable and a wellcome property. We
note that Z does not have it, but dx has. Looking for perturbation invariance, we note
that the perturbing vector p can be regarded as the likelihood vector in a Bayesian updat-
ing of a probability statement. If two scientists start with probability statements x and
x* and both update correctly and Bayesianly with likelhood p, then surely we would not
expect any change in the measure of difference between them. Thus, perturbation invari-
ance seems to be a sensible requirement. We see that Z has not perturbation invariance,
but dx has.

On the other hand, in Figure 1 we can see that the dy dissimilarity has a reasonable
behaviour. Note that if the center of the neighbourhoods is near to a border or near to a
corner they are crushed, pressed together. This happens because the compositions near
to the border or near to the corner have some components close to zero and any small
change in its magnitude produces a great change in the ratio of the components.
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Figure 1: Neighbourhoods in the simplex S* with distance d.

Now we consider the Metabol data set X presented in [1] formed by the urinary
excretions (mg/24 hours) of 37 normal adults and 30 normal children of

1. x1: total cortisol metabolites;
2. xo: total corticosterone metabolites;
3. x3: total pregnanetriol and A-5-pregnentriol.

In Figure 2a we can observe that the data set X is near to the x;-corner. This fact
happens when one of the components of the data set is near to 1. We consider the center
of the data set X as the compositional geometric mean cen(X). This center is defined as

(917927---79D) (5)

cen(X) =
(X) g+g2+...+4gp

1/N
where g; = (HZN:1 xz-j) is the geometric mean of the jth component of the compositions

X1, X2,..., Xy in X. In our case we obtain cen(X) = (0.8230,0.0886,0.0884). Therefore
it is very difficult to establish if there are differences between adults and children in the



realtive patterns of their excretions. If we perturb the data set X by the perturbation
cen(X) ™! the result data set are centered, i.e. the center of the set cen(X)™'oX is e, the
center of the simplex. Now we can observe in Figure 2b that urinary excretions of adults
have a different pattern than children’s metabolite.

Then if we choose a measure of difference which is perturbation invariant and we apply
a hierarchic method of cluster we obtain the same results for the original data set X and
for the centered data set cen(X)™!oX. Figure 3 shows the dendrogram of Ward’s method
applied to the set X using the dg dissimilarity. The classification power is aproximatly
equal to 88%. For the Aitchison distance similar results are obtained (see [7] for further
examples). If we use the Euclidean distance to cluster the set X we obtain that the
classification power decreases to 64%.
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Figure 2: Metabol data set X in the ternary diagram (simbols: ‘x’-adult and ‘o’-children)
where (a): Original data; (b): Centered data.
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Figure 3: Dendrogram of Ward’s method applied to Metabol data set X.



4. CONCLUSIONS

e This new dissimilarity is a possible choice for a measures of difference to composi-
tional data.

e [t is necessary to study more deeply the performance of other related measures when
they are applied to compositional data.
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