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ABSTRACT

For the application of many statistical methods it is necessary to establish the measure of
di�erence to be used� This measure has to be de�ned in accordance with the nature of the
data� In this study we propose a measure of di�erence when the data set is compositional�
We analyze its properties and we present examples to illustrate its performance�

�� INTRODUCTION

It is well known that the usual dissimilarities and distances are inadequate to measure
the di�erence between two compositonal data �see ��� for further details	� In �
� Aitchison
proposes that a suitable measure of di�erence de�ned on the simplex SD should verify
two essential requirements� perturbation invariance and subcompositional dominance�

One of the most widely used measures of divergence between two multinomial prob�
ability distributions is the Kullback�Leibler information number� The purpose of this
paper is to propose a measure of di�erence between two compositional data based on the
Kullback�Leibler divergence�

In the next section we de�ne the new measure
 we analyze its propierties
 and we show
that the compositional requirements are veri�ed� Then we expose an interpretation of the
measure and present an example to illustrate its performance�

�� MEASURE OF DIFFERENCE BETWEEN TWO COMPOSITIONS

In �
� Aitchison proposes that any scalar measure of di�erence between two compositions
x�x� � SD can be expressed in terms of the ratios of the components� More accurately

a suitable measure of di�erence should be a function of the compositions x � x��� and
x� � x��
 where ��� simbolizes the perturbation operation introduced in ���� We call
these compositions as the perturbation di�erences between x and x�� Note that to the
special case x � x� we obtain the perturbation di�erence x � x��� � e
 where e �
���D� ��D� � � � � ��D	 is the center of the simplex SD�

It is well knwon that a suitable measure is the distance dA �squared	 called Aitchison
distance

d�A�x�x
�	 � D � d�E�clr�x	� clr�x

�		� ��	

where dE represents the Euclidean distance and clr the clr�transformation �see ��� for more
details	� Because the distance dA is perturbation invariant we can express ��	 as function



of the perturbation di�erences
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On the other hand
 we can express the Kullback�Leibler information number �see ���	
between two compositonal data x�x� � SD as the expression

I�x�x�	 �
DX
k��

xk log

�
xk
x�k

�
� ��	

In equation ��	 the factor log�xk�x
�

k	 is interpreted as the information gain in predicting
the event Ek whose probability is xk by the estimation x�k� Then
 I�x�x

�	 is the average
information gain given by D events Ek �k � �� 
� � � � � D	� In ���
 ��� and ��� related
measures for compositional data can be found�

By analogy to the equation �
	 we can de�ne on SD a measure of di�erence based on
the K�L index ��	 as

dK�x�x
�	 �

D




�
I�e�x� � x��	 � I�e�x � x���	

�
� ��	

Consequently dK is a measure proportional to the average information gain of D events
Ek �k � �� 
� � � � � D	 whose probability is ��D by the estimation of the components of
the perturbation di�erences� Actually it is possible to expand the de�nition ��	 to other
measures of divergence�

Then
 we can prove that the measure of di�erence dK veri�es the following properties

P�� dK�x�x
�	 � D

�
log �A�x�x�	 � A�x��x		 � where A�x�x�	 simbolizes the arithmetic

mean of the vector of ratios x�x� �
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P
� De�nite� dK�x�x
�	 � �� �x�x� � SD 
 and
 dK�x�x

�	 � � �� x � x��

P�� Symmetry� dK�x�x
�	 � dK�x

��x	� �x�x� � SD�

P�� Perturbation invariance� dK�p � x�p � x
�	 � dK�x�x

�	� �x�x��p � SD�

P�� Subcompositional dominance� dK�xs�x
�

s	 	 dK�x�x
�	� �x�x� � SD� for any sub�

composition with s components�

Therefore the measure dK de�ned in ��	 is a de�nite dissimilarity �see ���	 that veri�es all
the compositional requirements�

	� COMPOSITIONAL PERFORMANCE

A composition can be understood as the vector of probabilities associated to a multino�
mial distribution
 and thus as a probability statement about a �nite number of possible
states or hypotheses� Consequently
 the counterpart of a subcomposition is a conditional
multinomial distribution or a conditional probability statement on a subset of the states�



Therefore
 compositional dominance could be a desirable and a wellcome property� We
note that I does not have it
 but dK has� Looking for perturbation invariance
 we note
that the perturbing vector p can be regarded as the likelihood vector in a Bayesian updat�
ing of a probability statement� If two scientists start with probability statements x and
x� and both update correctly and Bayesianly with likelhood p
 then surely we would not
expect any change in the measure of di�erence between them� Thus
 perturbation invari�
ance seems to be a sensible requirement� We see that I has not perturbation invariance

but dK has�

On the other hand
 in Figure � we can see that the dK dissimilarity has a reasonable
behaviour� Note that if the center of the neighbourhoods is near to a border or near to a
corner they are crushed
 pressed together� This happens because the compositions near
to the border or near to the corner have some components close to zero and any small
change in its magnitude produces a great change in the ratio of the components�

Figure �� Neighbourhoods in the simplex S
� with distance dK�

Now we consider the Metabol data set X presented in ��� formed by the urinary
excretions �mg�
� hours	 of �� normal adults and �� normal children of

�� x�� total cortisol metabolites�


� x�� total corticosterone metabolites�

�� x�� total pregnanetriol and ����pregnentriol�

In Figure 
a we can observe that the data set X is near to the x��corner� This fact
happens when one of the components of the data set is near to �� We consider the center
of the data set X as the compositional geometric mean cen�X	� This center is de�ned as

cen�X	 �
�g�� g�� � � � � gD	

g� � g� � � � �� gD
� ��	

where gj �
�QN

i�� xij

���N
is the geometric mean of the jth component of the compositions

x�
 x�
���
 xN in X� In our case we obtain cen�X	 � ����
��� ������� ������	� Therefore
it is very di�cult to establish if there are di�erences between adults and children in the



realtive patterns of their excretions� If we perturb the data set X by the perturbation
cen�X	�� the result data set are centered
 i�e� the center of the set cen�X	�� �X is e
 the
center of the simplex� Now we can observe in Figure 
b that urinary excretions of adults
have a di�erent pattern than children�s metabolite�

Then if we choose a measure of di�erence which is perturbation invariant and we apply
a hierarchic method of cluster we obtain the same results for the original data set X and
for the centered data set cen�X	���X� Figure � shows the dendrogram of Ward�s method
applied to the set X using the dK dissimilarity� The classi�cation power is aproximatly
equal to ���� For the Aitchison distance similar results are obtained �see ��� for further
examples	� If we use the Euclidean distance to cluster the set X we obtain that the
classi�cation power decreases to ����

X1

X2 X3

X1

X2 X3

�a� �b�

Figure �� Metabol data set X in the ternary diagram �simbols� ���	adult and ���	children

where �a
� Original data� �b
� Centered data�

Figure �� Dendrogram of Ward�s method applied to Metabol data set X�




� CONCLUSIONS


 This new dissimilarity is a possible choice for a measures of di�erence to composi�
tional data�


 It is necessary to study more deeply the performance of other related measures when
they are applied to compositional data�
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