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Abstract 
 
The classical statistical study of the wind speed in the atmospheric surface layer is made 
generally from the analysis of the three habitual component s that perform the wind data, 
that is, the component W-E, the component S-N and the vertical component, 
considering these components independent. 
 
When the goal of the study of these data is the Aeolian energy, so is when wind is 
studied from an energetic point of view and the squares of wind components can be 
considered as compositional variables. To do so, each component has to be divided by 
the module of the corresponding vector. 
 
In this work the theoretical analysis of the components of the wind as compositional 
data is presented and also the conclusions that can be obtained from the point of view of 
the practical applications as well as those that can be derived from the application of 
this technique in different conditions of weather. 
 
 
1. Introduction 
 
In the atmospheric surface layer the behaviour of wind is generally studied starting from 
data related to its three components. If we denote by xv  the west-east component of 
wind data, by yv  to the south-north component and zv  to the vertical component, we 
can define a vector with those three components. This is the wind vector 

( , , )x y zv v v v=
r

. In micrometeorology, these coordinates are usually denoted as u, v, w. 
This paper analyses the possibility of studying the wind components as compositional 
variables, when the squares of wind components are considered. This results when wind 
is studied from an energetic point of view. Transformations of compositional data in 
this case are also studied. 
 
We recall that we call an observation of m components any element of the set 
 

{ }1 2( , ,..., ) ; 0, 1,2,...,m m
m jx x x x x j m+ = = ∈ > =¡ ¡  

 
We call composition of m components any element of the subset m

mS +⊂ ¡  defined by 
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{ }1 2; ...m m
m mS x x x x C+ += ∈ + + + = ⊂¡ ¡  

 
In the above definition C  is a constant named closure constant. The value of the 
closure constant depends on the units of data. For example, 100C = if data are 
percentages, 610C = if data are part per million (ppm), 1C = if data are parts of the unit, 

etc. Because it is verified that 
1

m

j
j

x C
=

=∑ , then 
1

1
m

j

j

x

C=

 
= 

 
∑ ; so, for the sake of 

simplicity, we can assume that C = 1. 
 
 
2. The wind components as compositional data 
 
In the study of the dynamics in the atmospheric surface layer it is important to register 
the wind in three orthogonal directions. Consequently, the wind is expressed through 
three coordinates, two in the horizontal plane and the third one orthogonal to this plane. 
As a matter of convenience, in the horizontal plane, the parallel coordinate xv  is defined 
according in a west-east direction to the equator. The perpendicular coordinate yv  in a 

south-north direction and the coordinate zv  perpendicular to both coordinates increasing 
from the floor. These coordinates are considered forming a trihedron positively guided. 
So, according to these definitions, we can consider the wind vector as ( , , )x y zv v v v=

r
; 

we call it simply, the wind. 
 
The Euclidean norm or the module of the wind, is given by the expression: 
 

2 2 2
x y zv v v v v= = + +

r
 

 
Considering the quotient between the wind and its module, we obtain the u

r
 vector as:    

 

( )1 1
, ,x y zu v v v v

v v
= =

r r
 

 
According to its definition, it will be a unit vector, that is 
 

1u =
r

 
 

It is also true that 
 

2
1u =

r
 

 
Having done the above exposition, we can arrive to the compositional variable of the 
wind presented in the following section. 
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3. The wind kinetic coefficient 
 
We define the wind kinetic coefficient, that we denote by E

r
, as the vector: 

 
22 2

1 2 3( , , ) , ,yx z
vv v

E E E E
v v v

     = =            

r
 

 
This vector is composed by three components; each one of them has no dimension (in 
physic sense). The vector E

r
 is related to the proportion of kinetic energy associated to 

the wind in each one of its directions. Also, for their definition, the vector E
r

 is such 
that its components are compositional variables, because the sum of these is 1. In fact: 
 
 

22 2 2 2 2 2

1 2 3 2 2 1y x y zx z
v v v vv v v

E E E
v v v v v

+ +    + + = + + = = =    
    

 

 
In the figure 1 we present an example of ternary diagram of the kinetic coefficient of the 
wind. 
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Figure 1:  Example of ternary diagram of the kinetic coefficient of the wind 
 
 
By this way we have been able to associate a compositional component to the wind  
vector. It is sought to study its applicational possibilities to the dynamic characteristics 
of the atmospheric surface layer.    
 
The mathematical and statistical analysis of the compositional variables is usually made 
by a previous transformation applied to data. In the following section we present some 
examples of these.    
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4. Transformations of the wind kinetic coefficient   
 
The transformations more commonly applied to compositional data values are: the 
additive logratio transformation (ALR), the centred logratio transformation (CLR), both 
defined by Aitchison (1986), and the most recent the isometric logratio transformation 
(ILR) defined by Egozcue et al. (2003).   

In this section we present how these transformations are applied to the kinetic 
coefficient. 
 
 
4.1 Additive logratio transformation ALR  
 
The ALR transformation is defined as: 
 

( )

1

1 2
1 2 1

1 1 1

:

, ,..., ln ,ln ,...,ln

n
n

n
n

n n n

ALR S

x x x
x x x

x x x

+

+
+ + +

→

 
→  

 

¡
 

 
In the case of the kinetic coefficient the application is: 
 

( )

2
3

1 2
1 2

3 3

:

( ) ln ,ln ,

ALR S

E E
E ALR E A A

E E

→

 
→ = = 

 

¡
r r  

 
Then,  

( )
( ) ( )

22

1 2
2 2

3 3

( ) ln ,ln ln ,ln

yx

z z

vv
vvE E

ALR E
E E v v

v v

  
      = =    
 
 

r
 

Simplifying 
 

2 222

2 2( ) ln ,ln ln ,lny yx x

z z z z

v vv v
ALR E

v v v v

      
 = =            

r
 

 
By logarithm rules 
 

( )( ) 2(ln ln ),2(ln ln )x z y zALR E v v v v= − −
r

 

 
In consequence the ( )1 2,A A  components of the transformation ALR of the kinetic 
coefficient, is expressed as follows: 
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1

2

2(ln ln )

2(ln ln )

x z

y z

A v v

A v v

 = −


= −
 

 
Finally, the matrix expression of this system is: 
 

1

2

ln
2 0 2

ln
0 2 2

ln

x

y

z

v
A

v
A

v

 
 −   

=     −    
 

 

 
4.2 Centred logratio transformation CLR  
 
The CLR transformation is defined as: 
 

( )

1
1

11 2
1 1

:

,..., ln ,ln ,...,ln
( ) ( ) ( )

n
n

n
n

CLR S

xx x
x x

g x g x g x

+
+

+
+

→

 
→  

 

¡

 

 
In this expression, ( )g x  is the geometric mean of the components. 
 
In our case: 
 

( )

3
3

1 2 3
1 2 3

:

( ) ln ,ln ,ln , ,
( ) ( ) ( )

CLR S

E E E
E CLR E C C C

g E g E g E

→

 
→ = = 

 

¡
r r  

 
In this expression ( )g E  is the geometric mean of the wind kinetic coefficient: 
 

2 2 2
3 3 3

1 /322 2

3
1 2 3 2( ) y x y zx z

v v v vv v
g E E E E

v v v v

     = = =           
 

 
Then, 

( ) ( )
22 2

( ) ln ,ln ,ln
( ) ( ) ( )

yx z
vv v

vv v
CLR E

g E g E g E

  
  

  =
 
 
 

r
 

 
Simplifying 
 

2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3

22 2

( ) ln ,ln ,lnyx z

x y z x y z x y z

vv v
CLR E

v v v v v v v v v

 
=   

 

r
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44 433 3

2 2 2 2 2 2
3 3 3 3 3 3

( ) ln ,ln ,lnyx z

y z x z x y

vv v
CLR E

v v v v v v

 
=   

 

r
 

 
Finally, we have:  
 

1

2

3

4 2 2
ln ln ln

3 3 3
2 4 2

ln ln ln
3 3 3
2 2 4

ln ln ln
3 3 3

x y z

x y z

x y z

C v v v

C v v v

C v v v

 = − −



= − + −



= − − +

 

 
The matrix expression of this linear system is: 
 

1

2

3

ln4 / 3 2 / 3 2 / 3

2 / 3 4 / 3 2 / 3 ln
2 / 3 2 / 3 4 / 3 ln

x

y

z

vC

C v
C v

 − −   
    = − −     

    − −    

 

 
 
4.3 Isometric logratio transformation ILR  
 
The ILR transformation is defined as: 
 

( )

1
1

1 21 1
1 1

2 3 1

:

1 2 ( ,..., )
,..., ln , ln ,..., ln

2 3 1

n
n

n
n

n

ILR S H

x xx n g x x
x x

x x n x

+
+

+
+

→ ⊂

 
→   + 

¡

 

 
In this case, we have: 
 

( )

3
3

1 21
1 2

2 3

:

1 2
( ) ln , ln ,

2 3

ILR S H

E EE
E ILR E I I

E E

→ ⊂

 
→ = =  

 

¡

r r  

 

( ) ( )
( )

222

2 2
1 2

( ) ln , ln
2 3

yxx

zy

vvv
v vv

ILR E
vv

vv

    
  =        

r
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2

2 2

1 2
( ) ln , ln

2 3
x yx

y z

v vv
ILR E

v v

 
=   

 

r
 

 
 

1 2
( ) (2ln 2ln ), (ln ln 2ln )

2 3x y x y zILR E v v v v v
 

= − + − 
 

r
 

 
Consequently, the ILR components are: 
 
 

1

2

1
(2ln 2ln )

2

2
(ln ln 2ln )

3

x y

x y z

I v v

I v v v


= −



 = + −

 

 
The matrix expression of this linear system is: 
  

1

2

ln
2 / 2 2 / 2 0

ln
2 / 3 2 / 3 2 2 / 3

ln

x

y

z

v
I

v
I

v

 
  − 

=      −    
 

 

 

5. Conclusions  
1. Wind components can be considered as compositional variables, considering the 
squares of wind vector components. 
2. From this consideration, we can define a wind kinetic coefficient through which is 
possible to analyse the atmospheric dynamics according to the methodology based on 
compositional data. 
3. Usual compositional data transformations applied to wind kinetic coefficient can be 
interpreted from energetic point of view in the wind studies. 
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