

Compositional data analysis of vote shares in the 2001 Australian Federal election

Derek Chong, Sinclair Davidson Lisa Farrell and Tim R.L. Fry

Context

- Geospatial modelling has investigated spatial voting patterns in Federal elections
- We are interested in investigating the determinants of voting outcomes at the electoral division level
- We hypothesise that voting outcomes are related to the characteristics of the electoral divisions
- We will focus upon first preference voting for The House of Representatives in the 2001 Federal election

Data

- 2001 Federal election took place three months after the 2001 census
- Thus we have an ideal match between the voting data and census data on the characteristics of the electoral divisions.
- We use Australian Electoral Commission data for the 150 electoral divisions on the vote shares of six parties
 - Coalition, ALP, Democrats, Greens, ONP and Others
- This is matched to census data on characteristics of the electoral division

Compositional data analysis

• Use the additive log-ratio transformation and fit a multivariate regression model to the transformed data:

$$y_{i} = \ln\left(\frac{S_{i}}{S_{n}}\right) = \mu_{i}\left(\mathbf{Z},\boldsymbol{\theta}\right) + u_{i} = Z_{i}'\boldsymbol{\theta}_{i} + u_{i},$$

$$\mathbf{u} = [u_{i}] \sim N\left(\mathbf{0}, \boldsymbol{\Sigma}\right).$$

Can invert to return to vote shares.

Zeros in compositional data analysis

- Cannot take the log of zero
- Solution is to use "modified Aitchison" with minimum (sensible) replacement values
- We will assume that when we observe a zero we can replace it with a one
 - That is, should the parties have stood then the candidates would have voted for themselves
- Check for robustness of estimates to the zero replacement procedure

Results

- Estimates make sense and are well determined.
- Robust to changing the the zero replacement (1, 2, 3, 5, 10, 20 or 50 votes)
- Correctly classify 139 of 150 electoral divisions
 - New England predicted Coalition actually Independent
 - AEC classified as Safe National Party
 - Of the six predicted ALP but actually Coalition <u>all</u> were classified by the AEC as marginal ALP
 - Of the four predicted Coalition but actually ALP three were classified by the AEC as marginal (ALP and Liberal)

Estimated Vote Shares for Stylised Electoral Divisions

Estimated Incumbency Effect

Estimated Impact of Higher Education

Estimated Impact of Unemployment

Estimated Impact of Income Inequality

Estimated Impact of Age Inequality

Results

- We can use our estimated model to give us the estimated votes by electoral division
 - For a party that did not contest an electorate (e.g. ONP)
 this is an estimate of the vote that they might have
 obtained had they stood
 - IF the party (ONP) makes rational decisions then the vote in electorates that it does contest is larger than that in which it does not stand a candidate.
 - t-test statistic is 8.8179

Conclusions

- First application of compositional data analysis techniques to Australian election data
- Still need to fine tune the work but results are encouraging
- Also working on a number of related issues concerning functional forms and zero replacement in compositional data analysis