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Abstract 
This paper sets out to identify the initial positions of the different decision 
makers who intervene in a group decision making process with a reduced 
number of actors, and to establish possible consensus paths between these 
actors. As a methodological support, it employs one of the most widely-known 
multicriteria decision techniques, namely, the Analytic Hierarchy Process 
(AHP). Assuming that the judgements elicited by the decision makers follow the 
so-called multiplicative model (Crawford and Williams, 1985; Altuzarra et al., 
1997; Laininen and Hämäläinen, 2003) with log-normal errors and unknown 
variance, a Bayesian approach is used in the estimation of the relative priorities 
of the alternatives being compared. These priorities, estimated by way of the 
median of the posterior distribution and normalised in a distributive manner 
(priorities add up to one), are a clear example of compositional data that will be 
used in the search for consensus between the actors involved in the resolution of 
the problem through the use of Multidimensional Scaling tools. 
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1. INTRODUCTION 
 
The philosophical, methodological and technological changes that have arisen in the 
Knowledge Society in recent years call for the use of new scientific approaches that 
allow multiactor decision making to be more open and flexible than has traditionally 
been the case (Moreno-Jiménez et al., 1999, 2001). These approaches must allow the 
integration of intangible and subjective aspects associated with the human factor in the 
resolution of the problems. 
One of the methodological approaches that answers this kind of necessities is the 
Analytic Hierarchy Process (AHP) developed by Thomas Saaty in the mid-1970s. Its 
ability to integrate the small with the large, the individual with the collective, the 
objective with the subjective and the deterministic with the stochastic so as to capture 
the interdependencies of the model and its potential to extract the knowledge derived 
from the scientific resolution of the problem have made it one of the most commonly 
employed tools in the resolution of complex multi-actor problems. 
Assuming a scenario with multiple actors and a common hierarchy, the procedures 
traditionally used in AHP Group Decision Making are based on the aggregation of 
judgements (AIJ) or priorities (AIP), which can provoke the rejection of the most 
dissenting actors. In order to favour the search for a final consensus that adequately 
represents the individual interests, it is convenient to improve our knowledge of the 
decisional process (Moreno-Jiménez et al., 2002). It is particularly necessary to have 
more information about the discrepancies of the actors in order to find out the critical 
points and the decision opportunities existing in the problem. 
In this paper a general framework that facilitates the practical implementation of this 
process is established. The proposed procedure is based on the identification of the 
“agreement” and “disagreement” zones among the actors obtained from the analysis of 
the pairwise comparison matrices that reflect their preferences, by using the 
fundamental scale proposed by Saaty (1980). To that end, a statistical Bayesian model 
that describes possible agreements among the actors is used. The proposed framework 
takes into account the negotiation attitude of the actors, letting them adapt their initial 
positions in order to favour the establishment of consensus paths to reach a more 
satisfactory final agreement. Furthermore, the methodology is valid for the analysis of 
incomplete and/or imprecise pairwise comparison matrices, which gives it more 
flexibility and realism. 
The paper is structured as follows: Section 2 briefly revises the AHP group decision 
making. In Section 3 the problem is posed and the models that are used are defined. 
Section 4 analyses the problem of the search for consensus. Finally, Section 5 
concludes.  

2. AHP GROUP DECISION MAKING 

The Analytic Hierarchy Process (AHP) is one of the methodological approaches which 
allows us to resolve high complexity problems involving multiple scenarios, criteria and 
actors. It was first proposed in the mid-1970s by Thomas L. Saaty (Saaty, 1977, 1980) 
and is characterised by the building of a ratio scale corresponding to the priorities of the 
different alternatives of the problem. To that end, AHP follows four steps: (1) 
modelisation, (2) valuation, (3) prioritisation and (4) synthesis. 
The first of these steps involves the construction of a hierarchy that includes the relevant 
aspects of the problem (criteria, sub-criteria, attributes and alternatives). The second 
incorporates the individual preferences (judgements) that reflect the relative importance 
of the alternatives through a pairwise comparisons matrix, Anxn=(aij), with aij aji=1, 



i,j=1,...,n and aij belonging to the fundamental scale proposed by Saaty (Saaty, 1980). 
The third step provides the local and global priorities of each element of the hierarchy. 
The local priorities, obtained by some of the prioritisation procedures (the eigenvalue 
method (Saaty, 1980) and the row geometric mean method (Crawford and Williams, 
1985) are the two most commonly employed), measure the priorities of the elements of 
one level of the hierarchy with respect to its parent node. The global priorities of any 
node of the hierarchy are calculated by applying the Hierarchical Composition Principle 
(Saaty, 1980) and reflect the priority of any node with respect to the main goal. Finally, 
in the fourth step, the global priorities of alternatives are synthesised by means of an 
aggregation procedure (here, the weighted arithmetic and geometric means are the most 
extensively used), to obtain the total or final priorities of the alternatives. Using these 
total priorities, it is possible to rank the alternatives of the problem and to take the most 
appropriate decisions.  
Moreover, in contrast to other multi-criteria decision techniques, AHP allows us to 
measure the inconsistency of the judgement elicitation process, the consistency ratio of 
Saaty (Saaty, 1980) and the geometric consistency index (Crawford and Williams, 1985; 
Aguarón and Moreno-Jiménez, 2003) being the most used measures.  
The flexibility of AHP has allowed its use in group decision making. Moreno et al. 
(2002) distinguish three possible situations: (i) Group Decision where the individuals 
act jointly by looking for a common decision; (ii) Negotiated Decision where each actor 
solves the problem individually and then the agreement and disagreement zones are 
analyzed in order to reach a consensus and (iii) Systemic Decision where each 
individual acts independently and a tolerance principle is used to look for a way of 
integrating all the positions. In this paper the Negotiated Decision situation is 
considered in which it is important to take the negotiation attitude into account in order 
to reach a satisfactory final consensus. 
There are two ways to analyse a group decision problem in the classical literature on 
AHP (Ramanatham and Ganesh, 1994; Forman and Peniwati, 1998): (i) Aggregation of 
Individual Judgements where a new pairwise comparison matrix for the group is 
constructed aggregating the individual judgements by means of consensus, voting or 
statistical procedures such as, for instance, the weighted geometric mean. From this 
matrix, the priority vector is then calculated following any of the existing prioritisation 
procedures. (ii) Aggregation of Individual Priorities where the individual priorities are 
aggregated in order to obtain the priority of the group, with the usual aggregation 
procedure being the weighted geometric mean. 
It could occur that some of the decision makers do not agree with the proposed solution. 
In these cases it is necessary to identify the more divergent opinions in order to establish 
consensus paths that facilitate a more representative and democratic decision process. 
So it is necessary to identify the actors and judgements responsible for the lack of 
consensus.  
In this paper a general framework based on a Bayesian statistical procedure is proposed 
that lets us capture some possible agreements between the decision makers. Taking as a 
starting point the individual positions of the actors, the procedure adjusts them in order 
to establish, semi-automatically, some possible consensus paths. This problem is 
considered as an optimisation problem with restrictions which searches for the 
minimisation of some discrepancy measures that depend on the kind of problem (Roy, 
1985). Furthermore, the procedure makes it possible to analyze incomplete and/or 
imprecise pairwise comparison matrices which makes the analysis more flexible and 
realistic. 
 



3. FORMULATION OF THE PROBLEM 
Assuming a local (single criterion) context, let D = {D1,…,Dr} r ≥ 2 be a group of r 
decision makers expressing r reciprocal judgement matrices {Rnxn

(k); k = 1,…, r}, 
corresponding to pairwise comparisons for a set of n alternatives {A1,…,An} with 
regard to the criterion considered, where )k(

nxnR  = ( ))k(
ijr  is a positive squared matrix 

which validates ,1r )k(
ii =  )k(

ij

)k(
ji r

1r = >0 for i≠j. The judgements )k(
ijr  represent the 

relative importance to the decision maker Dk of Ai compared to Aj, according to the 
fundamental scale proposed by Saaty (1980). 
Let v ={v1, …,vn} (v1>0, …, vn>0) be the group’s (unnormalised) priorities for the 
alternatives obtained by means of any of the usual prioritisation methods, and let w1,…, 

wn s be their normalised distribution values 

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3.1 Statistical model 
To obtain the group’s priorities from a Bayesian point of view, a multiplicative model 
with normal logarithmic errors is used, such as is traditionally employed in the 
stochastic AHP (Ramsay, 1977; de Jong, 1984; Crawford and Williams, 1985; Genest 
and Rivest, 1994; Alho and Kangas, 1997; Altuzarra et al., 1997; Laininen and 
Hämäläinen, 2003, …) and which is given by the expression:  
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v
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where Jk⊆J = {(i,j): 1≤i<j≤n} is the comparison set provided by decision maker Dk in 
the upper triangle of the Rnxn

(k) matrix and the errors )k(
ije ~ ( )2)k(

ij,0LN σλ  follow log-

normal independent distributions, where )k(
ijλ ≥0 are provided by the agents and reflect 

their negotiation attitude.  
Taking the logarithms, a regression model with normal errors is obtained given by: 

 )k(
ijy  = )k(

ijji ε+µ−µ   (i,j)∈Jk; k = 1,.., r (3.2) 

where ( ))k(
ij

)k(
ij rlogy = , µi = log(vi) y )k(

ijε ~ ( )2)k(
ij,0N σλ . In order to avoid problems of 

identifications, the alternative An (µn = 0) is established as the benchmark. 
)k(

ijλ  factors are decision maker specifics and determine his flexibility level to adapt to 
the group’s priorities (v). So, the bigger (smaller) its value, the bigger (smaller) will be 
its tolerance and the bigger (smaller) will be the error values )k(

ijε  assumed by the 
decision maker. These factors, that express the position of each decision maker, are 
based, habitually, on subjective aspects like his knowledge of the problem (previous 
experiences) or whether he is interested in reaching an agreement. Initially it is 
supposed that )k(

ijλ  = 1, ∀i,j,k so that the variability is given by the assumed 
inconsistency  level of the group (σ2). 

3.2 Prior distribution 
The prior distribution for the vector of log-priorities is given by: 

 µ = (µ1,…,µn-1) | σ2 ~ 
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where G(p,a) denotes gamma distribution with mean p/a and variance p/a2, 0n-1 denotes 
the n-1 dimensional null vector and In-1 the identity matrix (n-1)x(n-1).  
The constants p, a and λµ control the influence of these prior distributions on inferences 
about parameters of the model (3.2), so that the smaller the parameters a and λµ are, the 
less informative are the distributions (3.3) and (3.4). Specifically, the prior distribution 
of reference arises where p→0, a→0 y λµ → 0. 

3.3 Posterior distribution 
In the following discussion, [X] will denote the density of the random variable X and 
[Y|X] the density of the conditioned distribution Y|X. Let y(k) = ( )'

k
)k(

ij J)j,i(;y ∈  be the 
vector expressed by the decision maker Dk; k =1,…,r where Jk⊆J ={(i,j):1≤i<j≤n} is the 
judgement set expressed by Dk and let |Jk| be its cardinal. If all the judgements have 

been expressed, |Jk| = 
2

)1n(n − . Let X(k) = ( ))k(
ijx  be a matrix Jkx(n-1) such that, if the ith 

component of the vector y(k) corresponding to the comparison between Aj and Al with 1 
≤ j < l<n then )k(

ijx  = 1, )k(
ix l  = -1 and )k(

isx  = 0 for s≠j, l and if l = n then )k(
ijx  = 1 and 

)k(
isx  = 0 for s ≠ j. 

In matrix notation, model (3.2) could be expressed as 

 y(k) = X(k)µ + ε(k) ; k = 1,…, r  (3.5) 

with ε(k) = ( )'
)k(

ijε  ~ ( ))k(2
|kJ||kJ| ,N D0 σ  where ( )
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Let y= ( )'(r)'(1)' ,...,yy  be an (Nx1) vector that contains logarithms of the judgements 

expressed by the decision makers, where N = ∑
=

r

1k
kJ  is the total number of the 

judgements expressed by all the decision makers. 
Let {β(1),…,β(r)} be a set of r positive values assigned by the analyst to weight the 
importance that the opinion of each decision maker has in the aggregate judgement 
process. These weights have been determined by factors such as social importance, the 
weight of the group they represent, their position in the firm, etc. Specifically, if all the 
decision makers have the same importance, then we will take {β(k) = 1; k = 1,…, r}. 
Using (3.3)-(3.5), weights {β(1),…,β(r) and supposing that the prior distribution is the 
reference distribution, that is, if p →0, a→0 y λµ → 0 then, it follows that: 
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Tn(m,S) denotes a multivariate Student-t with n degrees of freedom, and parameters m 
and S. As the degrees of freedom of the model determine the precision of the estimated 

parameters, we will require that weights β(k) satisfy ∑
=

β
r

1k
k

)k( J  = N so that the degrees 

of freedom of the model do not change because of factors that are external to the data. 
Particularly, if every decision maker expresses all the judgements (X(k) = X, D(k) = D ∀ 
k=1,…,r), it follows that: 
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of µ, obtained on the basis of the judgements expressed separately by all the decision 
makers. It is a weighted mean of the estimators )k(ˆ µm  with the coefficients β(k), which 
leads to the more important decision makers having more influence on the aggregate 
judgement process.  
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 is a consistency measure when 

E[µ|y] is taken as the priority vector of Dk. So, the most important and the least flexible 
decision maker will have more influence on the estimation of the group consistency. 

3.4 Example 
To illustrate the proposed methodology we include the following example about a group 
decision problem taken from Wang and Xu (1990). Suppose six decision makers that 
give the following comparison matrices with regard to the same decision problem. 
 

R1 =





















13/13/15/17/1
3122/14/1
32/113/15/1
52313/1
74531

 R2 = 





















17/15/16/18/1
7113/15/1
5114/13/1
63414/1
85341

 R3 =





















15/122/15/1
512/112/1
2/1215/13/1

21512
5232/11

 

 



R4 =





















125/12/16/1
2/114/13/12/1

54115/1
23113/1
62531

 R5 = 





















15/114/13/1
5125/13/1
12/112/16/1
45212/1
33621

 R6 =





















13/12/16/19/1
3112/14/1
2113/15/1
62312/1
94521

 

 
Let r=6, X(k) = X be and Jk = 10 ∀k. We will take, furthermore, β(k) = 1 assigning the 
same importance to all the decision makers. Tables 3.1 to 3.3 show the results obtained 
when we analyse, from a Bayesian standpoint, model (3.5) separately for every decision 
maker, with λµ→0, p=0.1 and a = 0.0177 (Altuzarra et al., 2005). The prior distribution 
is diffuse and centred on the inconsistency limit proposed by Genest and Rivest 
(1994).We can also see the consensus priorities, the level of inconsistency of the group 
(Table 3.1) and the posterior consensus distribution of the most preferred alternatives 
(Table 3.2) and the preference structures (Table 3.3) taking )k(

ijλ = 1 ∀i,j,k. 

Table 3.1.  Posterior medians of the priorities and individuals and consensus inconsistency levels 
(Credibility interval of  95% in brackets) 

 
 )k(

1w  )k(
2w  )k(

3w  )k(
4w  )k(

5w  σ(k) 

D1 
0.491 

(0.461,0.520) 
0.232 

(0.211,0.254) 
0.092 

(0.083,0.103) 
0.138 

(0.125,0.153) 
0.046 

(0.041,0.052) 
0.259 

(0.175,0.439) 

D2 
0.480 

(0.426,0.535) 
0.249 

(0.208,0.295) 
0.117 

(0.096,0.142) 
0.120 

(0.026,0.032) 
0.032 

(0.026,0.039) 
0.481 

(0.325,0.817) 

D3 
0.301 

(0.237,0.371) 
0.318 

(0.251,0.391) 
0.102 

(0.077,0.134) 
0.183 

(0.140,0.235) 
0.092 

(0.069,0.121) 
0.699 

(0.472,1.186) 

D4 
0.451 

(0.388,0.511) 
0.183 

(0.147,0.225) 
0.210 

(0.170,0.257) 
0.073 

(0.058,0.092) 
0.081 

(0.064,0.101) 
0.565 

(0.382,0.959) 

D5 
0.407 

(0.349,0.463) 
0.290 

(0.241,0.341) 
0.084 

(0.068,0.105) 
0.147 

(0.119,0.180) 
0.071 

(0.056,0.087) 
0.526 

(0.355,0.892) 

D6 
0.475 

(0.462,0.488) 
0.261 

(0.251,0.271) 
0.098 

(0.093,0.102) 
0.120 

(0.115,0.126) 
0.046 

(0.044,0.048) 
0.112 

(0.076,0.190) 

Consen. 0.437 
(0.376,0.504) 

0.258 
(0.209,0.312) 

0.114 
(0.089,0.144) 

0.128 
(0.101,0.160) 

0.058 
(0.046,0.074) 

0.623 
(0.552,0.712) 

 
Table 3.2.  Posterior probability distributions  (%) of the most likely alternatives for each decision maker 

and consensus distribution + in a P.α problem 
 

 A1 A2 A3 A4 A5 
D1 99.90 0.10 0.00 0.00 0.00 
D2 97.10 2.90 0.00 0.00 0.00 
D3 42.60 52.90 0.20 4.30 0.00 
D4 96.60 0.90 2.40 0.10 0.00 
D5 81.50 18.10 0.00 0.40 0.00 
D6 100.00 0.00 0.00 0.00 0.00 

Πα, consensus 100.00 0.00 0.00 0.00 0.00 
+ The probability distributions have been obtained from 10000 simulations of the distribution (4.8) for 

each decision maker and the consensus distribution (3.12)  
 



Table 3.3. Posterior probability distributions  (%) 
of the preference structure for each decision maker and consensus distribution + in a P.γ problem 

 12345* 12435 12354 12453 21435 21453 13245 13254 
D1 0.01 99.99 0.00 0.00 0.00 0.00 0.00 0.00 
D2 43.00 57.00 0.00 0.00 0.00 0.00 0.00 0.00 
D3 0.11 27.34 0.03 10.08 44.25 18.18 0.00 0.00 
D4 4.57 0.01 12.57 0.00 0.00 0.00 21.63 61.21 
D5 0.07 89.27 0.00 9.34 1.09 0.23 0.00 0.00 
D6 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 

Πγ, consensus 24.00 75.90 0.00 0.00 0.10 0.00 0.00 0.00 
+ The probability distributions have been obtained from 10000 simulations of the distribution (4.8) for 

each decision maker and the consensus distribution (3.12)  
*Preference structure A1f A2f A3f A4f A5 where f  means “preferred over”. 

 
Figure 3.1: Ternary diagrams of the priorities vector suppressing A5 (o represents consensus priority) 

 
Figure 3.2: Ternary diagrams of the priorities vector suppressing A1 (o represents consensus priority 



 
Decision makers D1 and D6 are the most consistent of the group because their variances 
are lower (Table 3.1). Also, except the most inconsistent decision maker (D3), who 
prefers A2, the rest of them much prefer A1 to the others (Table 3.2). 
With respect to the rankings, D1 and D6 show a very clear preference for the ranking 
A1fA2fA4fA3fA5 where f  means “preferred over” (from now on [12435]). This 
structure is also chosen by D5, and, though less strongly, by D2,. The decision makers 
who are most clearly in disagreement with the above mentioned preference structure 
are D3 and D4, (Figures 3.1 and 3.2) who are also the most inconsistent of the six (Table 
3.1). D3 opts for the ranking [21435], but not clearly in view of the high probability of 
rank reversal between alternatives A1 and A2, and A3 and A5. Finally, D4 opts for the 
ranking [13254], but with a high probability of rank reversal between alternatives A2 
and A3, and A5 and A4, as reflected in the not insignificant probabilities of the 
preference structures [13245] and [12354] (Table 3.3). Furthermore, the partial ranking 
[12***] is selected by four decision makers (D1, D2, D5, D6) with almost 100% 
probability. 
From the consensus distribution (Tables 3.2 and 3.3) the following situations stand out 
as the most preferred: (i) alternative A1 (99.99%); (ii) the partial ranking [12***] with 
100% and (iii) the preference structure [12435] with 75.90%. These conclusions are 
valid for most of the decision makers. 

4. A BAYESIAN APPROACH FOR CONSENSUS BUILDING 

After obtaining the posterior consensus distribution of the priorities vector, v = exp(µ), 
its representativeness is evaluated. Our proposal is to use discrepancy measures, 
D(a(k),v), between the above priorities and the judgements expressed by each decision 
maker (a(k)). These judgements will depend on the kind of decisional problem 
considered (Roy, 1985); their calculation will allow us to identify the agents who most 
disagree with the proposal consensus and why. On the basis of this information, we can 
begin searching for consensus paths that lead, possibly, to a common position. In this 
section several ways are described to construct the discrepancy measures and a 
procedure is introduced to obtain, semi-automatically, consensus paths that provide 
negotiation directions that can lead to wide agreement among decision makers. 

4.1 Discrepancy measurements 

4.1.1 Predictive discrepancy measurement 

This measure seeks to evaluate the level of incompatibility of the vector of judgements 
expressed by each decision maker with the priorities vector v. For this we use the 
Bayesian p-value 

 Dpred(a(k),v) = ( ) ( )[ ])k()k(
consenso

)k(
consenso ffP aa ≤  (4.1) 

where ( ) ( ) ( )∫ σσπλσ= 22
consenso

)k(2)k()k(
consenso dd,,,ff vvvaa  is the predictive distribution 

of the vector of judgements a, built on the basis of the consensus distribution πconsenso 
given for expressions (3.6)-(3.9).  
Standard calculations show that  
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where Fn,m denotes the Snedecor’s F distribution with n and m degrees of freedom. 



Discrepancy (4.1) measures the complementary of the minimum credibility level such 
that, if the discrepancy is very small (credibility level very high) it is a sign that the 
judgement is in the smallest density zone of the predictive distribution ( )a)k(

consensof  and, 
therefore, it is more improbable that the judgement has been expressed by a decision 
maker whose preferences are described by the consensus distribution πconsenso. 
Likewise, with a discrepancy measurement similar to (4.1), the judgements expressed 
by each decision maker that are most incompatible with the consensus proposed by the 
group would be identified. It would enough to calculate, for each judgement )k(

ija , the 
Bayesian p-value: 
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the aij judgement, built from the above Bayesian statistic model.  
Standard calculations show that (4.3) is given by: 
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4.1.2. Discrepancy measurement in P.α problems 

Type α decisional problems (P.α) are understood (Roy, 1985) to be those in which we 
try to determine the “best” alternative. In this case, the discrepancy measure tries to 
evaluate the agreement level of each decision maker with respect to the consensus 
opinion about the alternative most preferred by the group. The consensus opinion is 
given by: 

 πα,consenso,i = [ ]jnj1i vmaxvP ≤≤=  = ( )
{ }∫ µ≤≤=µ
π

jnj1maxi
consenso dµµ ; i=1,…,n (4.5) 

where πconsenso(µ) is the consensus distribution density of (3.7). 
As these probabilities cannot be calculated analytically, Monte Carlo methods are used 
to evaluate them. The discrepancy measurement is given by: 
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which is the posterior distribution of the log-priorities from Dk, obtained from a model 
analogous to (3.2). One way of building the similarity sα is given by Kronecker’s delta 
sα(Ai,Aj) = 1 if i=j and 0 otherwise, with Sα = In. 

4.1.3 Example (continuation) 
Carrying on with the above example (3.4), Tables 4.1.a and 4.1.b show the discrepancy 
measurement values (4.1) and (4.6) for each decision maker (Table 4.1.a) and also the 
discrepancy measurement (4.4) for each expressed judgement (Table 4.1.b). In addition, 
Figures 4.2 and 4.4 show perceptual diagrams obtained after applying a classical1 MDS 
to the distance matrices that are given by: dij = ( ) ( ) ( ))j(

tt
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t
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i,j∈{1,...,r}, with t=α in the case of Figure 4.4 and t=γ in the case of Figure 4.2. 
The probabilities vector )i(

απ  is that used to calculate the discrepancy measurement (4.6) 
and Sγ=(sγ(R,R’))R,R’∈PS, where PS is the set of preference structures, is a similarity 
measure between any of the preference structures and ( )
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)k()k()k( dµµ  with π(k)(µ(k)) being the distribution used in (4.7). 

It can be seen, as was to be expected, that the most discordant decision makers of the 
group are D3 and D4 (Tables 4.1a and 4.1b for judgements). In the case of D3 there are 
disagreements in all the measures used and these are due to his higher level preference 
for alternative A2 (Table 3.2 and Figure 4.4). In the case of decision maker D4, the 
disagreements are found in measure (4.1) and this is due to his higher level preference 
for structure [13254] (Table 3.3 and Figure 4.2). 

Table 4.1.a. Global discrepancies of each decision maker with consensus distribution 

Discrep. \ Decis. maker D1 D2 D3 D4 D5 D6 
Dpred(a(k),v) 0.0154 0.4779 0.8999 0.9161 0.4137 0.0003 
Dα(a(k),v) 0.0014 0.0453 0.7693 0.0469 0.2390 0.0000 
Dγ(a(k),v) 0.1267 0.1712 0.5000 0.7486 0.2411 0.1267 

Dconsistency(a(k),v) 0.1398 0.4046 0.7192 0.7788 0.3651 0.0712 

Table 4.1.b.  Discrepancies of the judgements expressed by each decision maker with consensus distribution 

Discrepancy/Decision 
maker D1 D2 D3 D4 D5 D6 

Dpred( )k(
12a ,v) 0.6204 0.8126 0.9387 0.6204 0.1992 0.1992 

Dpred( )k(
13a ,v) 0.3172 0.2986 0.2986 0.3172 0.5101 0.3172 

Dpred( )k(
14a ,v) 0.1969 0.448 0.59 0.59 0.1562 0.1969 

Dpred( )k(
15a ,v) 0.0816 0.0834 0.4671 0.2672 0.8401 0.2262 

Dpred( )k(
23a ,v) 0.3395 0.6228 0.7792 0.7912 0.1504 0.3395 

Dpred( )k(
24a ,v) 0.0024 0.4681 0.7169 0.4681 0.8406 0.0024 

Dpred( )k(
25a ,v) 0.1575 0.3696 0.7759 0.7759 0.1173 0.3696 

Dpred( )k(
34a ,v) 0.6244 0.148 0.7901 0.9778 0.6244 0.148 

Dpred( )k(
35a ,v) 0.4971 0.8532 0.9617 0.8532 0.6965 0.0335 

Dpred( )k(
45a ,v) 0.3717 0.9242 0.7954 0.9754 0.7954 0.3717 

                                                 
1 The program used was cmdscale from MATLAB 6.5 



4.2 Consensus paths 
Having studied the decision makers’ standpoints and their disagreements with the 
group’s standpoint, we will go on to search for a consensus between them so that the 
decision making process can be as representative and democratic as possible. To do so, 
we are going to follow two different procedures where, one way or another, the direct 
participation of the agents in the negotiation process is required: (i) the consensus of the 
agents on the basis of the information provided about the most discordant judgements 
and (ii)   the negotiation between the agents on the basis of the information supplied by 
the different consensus paths which have been obtained, semi-automatically, for 
different scenarios. All this will be carried out using an inverse sensibility analysis of 
the problem that will culminate in a process of discussion and debate with the aim of 
fixing new standpoints, in principle closer to each other. In the following sub-sections 
both procedures are studied in depth. 

4.2.1 Revision of judgements 
One way to reach a common standpoint is to identify and revise the judgements that 
most disagree with the proposed consensus. We must compare the expressed values of 
these judgements with the values predicted by the consensus distribution. Predictions 
are made using marginals from the predictive distribution of the log-judgements {y(k)}, 
built from the posterior distribution (3.7) 

 y(k) ~ ( )( )
kJ

)k()k(2)k(
Np 's,T IXSXmX +µµ+  (4.9) 

where mµ, Sµ and s2 are distribution parameters (4.8). From this, Bayesian credibility 
intervals can be constructed to provide a consensus path between the decision makers. 

4.2.1.1 Example (continuation) 
Using the discrepancy measurement (4.4) it can be seen (Table 4.1.b) that the 
judgements that are most in disagreement with the proposed consensus are )3(

35a , )4(
34a  

and )4(
45a  and, somewhat less, )3(

12a . Table 4.2 shows the 95% Bayesian credibility 
intervals  and the posterior median of the predictive distribution of consensus, both 
obtained from distribution (4.9). 

Table 4.2. Bayesian credibility intervals of  95% and posterior median of the disagreement judgements 
from consensus by the predicted consensus distribution 

 
Judgement Cuantil 2.5 Median Cuantil 97.5 Observed value 

 )3(
12a  0.4607 1.6998 6.2722 0.5 

 )4(
34a  0.2403 0.8867 3.2717 4 

 )3(
35a  0.5275 1.9465 7.1826 0.5 

 )4(
45a  0.5950 2.1953 8.1007 0.5 

 
It can be observed, particularly, that the judgements expressed by decision makers D3 
and D4 are outside of the above intervals, with the exception of )3(

12a  which is located 
near the lower limit. Comparing these values, D3 and D4 could analyse whether or not to 
change their values on these judgements towards the directions indicated by the 
intervals in order to reach a greater consensus. 



4.2.2. Semi-automatic generation of consensus paths 
One alternative way of establishing consensus paths consists of incorporating the 
negotiation attitude of the agents into the model and to simulate different scenarios, that 
is to say, to establish negotiation processes which would allow each decision maker to 
smooth or harden his original standpoint up to a certain limit, analyzing how the 
consensus distribution (3.12) would change. 
For this, we would propose optimisation problems in the following way: 

 Min ||D(a(k),v(λ(1),…,λ(r)))||p,β  (4.10) 

subject to  λmin = 100
p

1
100
p

1 max)k(max +≤λ≤− =λmax  with 0<pmax<100  

where v(λ(1),…,λ(r)) denotes the vector of consensus priorities obtained from model 
(3.1) with )k()k(

ij λ=λ  (1≤i<j≤n, k=1,…,r), D being one of the discrepancy measurements 
defined above, p the norm selected and β={β(1),…,β(r)} the set of weights assigned by 
the analyst. We use the Tchevichev norm (L∞) and β(k)=1 ∀k. Parameter pmax determines 
the maximum percentage of consistency of the group (σ2) and the flexibility of attitude 
of each decision maker. Thus the bigger pmax, the greater the decision makers' 
negotiation capacity and, therefore, the greater the possibility of reaching agreements 
between the decision makers. 

4.2.2.1 Example (continuation) 
Figures 4.1 and 4.2 show the evolution of the posterior consensus distributions of the 
preference structures estimated for different scenarios, according to the values of the 
negotiation attitude (limits pmax). Figure 4.1 shows these distributions as a line diagram. 
Figure 4.2 shows the same, but in a perceptual diagram calculated from the predictive 
disagreements between decision makers as was described in Subsection 4.1. Below we 
describe the results obtained with the two discrepancies measures:  
(i) Dpred: It can be seen that, the bigger the negotiation limit, the bigger the posterior 
probability of consensus on the preference structure [12435] (Figures 4.1 and 4.2) and 
the smaller the predictive disagreements of D3 and D4 since they adapt to the situation 
by increasing their tolerance levels λ(k). Moreover, the estimated value of priority of 
alternative A1, the group’s favourite, also increases. 
 



 
 

Figure 4.1: Sensibility analysis of the posterior consensus distribution of the preference structures when 
is wanted a predictive consensus 

 
Figure 4.2: Perceptual diagram of the evolution of the posterior distributions of the preference structures 

from each decision maker and the consensus distributions when is wanted a predictive consensus 
(ο12345 is the preference structure [12345]; �C1.2 is consensus distribution when λmax=1.2 and *D1 decision maker D1) 
 
(ii) Dα: If the problem is analysed from the point of view of discrepancy Dα, the results 
shown in Figures 4.3 and 4.4 are obtained. Their significance is similar to that described 
for discrepancy, Dpred. In this case, it can be observed that the consensus distribution 
about the most preferred alternative (A1) is quite stable. Only when the negotiation 



limits are wide, does the consensus probability of alternative A2, the favourite of 
decision maker D3, increase. This priority tends to increase when the negotiation limits 
widen. Consensus is reached, in this case, by increasing the tolerance levels of all the 
decision makers except D3. 
 

 
Figure 4.3: Sensibility analysis of the posterior consensus distribution of the most likely alternative when 

is wanted an alfa consensus 

 
Figure 4.4: Perceptual diagram of the evolution of the posterior distributions of the most likely 

alternative from each decision maker and the consensus distributions when is wanted an alfa consensus 
(οA1 represent A1 alternative;  �C1.7 is consensus distribution when λmax=1.7 and *D1 decision maker D1)  

 



The sensibility study carried out suggests various strategies for reaching a consensus. 
The first strategy would consist of the discordant decision makers D3 and D4 taking 
more flexible standpoints and/or reviewing their discrepant judgements. In this case, the 
consensus initially described would be maintained and would be compatible with the 
standpoints of all the decision makers. With respect to the P.α problem, it should be 
noted that there is a big consensus that A1 is selected in first place. Decision maker D3 is 
an exception because he supports alternative A2 instead of A1, but in spite of this A1 
has, at least, for this decision maker, a probability of 42.6% of being selected in the first 
place. The determination of the appropriate procedure in each case is an open question 
that would require a deeper debate within the group. 

5. Conclusions 
In this paper a Bayesian methodology for the semiautomatic search for consensus 
building in AHP group decision making has been introduced. The proposed procedure 
consists of two steps. In the first step, the existing individual discrepancies are analysed 
by using a Bayesian approach based on the multiplicative log-normal errors traditionally 
used in the stochastic AHP. Using the information obtained, some procedures are 
proposed to search for consensus between the actors involved in the decision making 
process. Some of them are based on the modifications of the more divergent individual 
judgements; others determine semiautomatic consensus paths by using the negotiation 
attitude of the decision makers. 
The methodology allows us to analyse to what extent it is possible to aggregate the 
information provided by each decision maker without loosing the consistency of 
judgements. Furthermore, and in the case of a lack of agreement between the decision 
makers, the methodology allows us to find the reasons for this lack, by analysing the 
disagreements within the groups. This information is used in the construction of 
different scenarios from which negotiation and judgements revision processes can be 
initiated in order to reach consensus. 
The methodology is appropriate if the number of decision makers is not large (10 or 
less) because, in these cases, the negotiation processes would be more fluid. If the 
number is large, the search for a consensus process would be based on the identification 
of the existing homogeneous opinion groups, and the negotiation process would be 
carried out between representative agents of each group. In order to identify these 
homogeneous groups it would be necessary to build cluster algorithms adapted to this 
situation. This is our current research line (Altuzarra et al., 2005) and its results will be 
reported elsewhere. 
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