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Abstract 
 
The application of Discriminant function analysis (DFA) is not a new idea in the study 
of tephrochrology. In this paper, DFA is applied to compositional datasets of two 
different types of tephras from Mountain Ruapehu in New Zealand and Mountain 
Rainier in USA. The canonical variables from the analysis are further investigated with 
a statistical methodology of change-point problems in order to gain a better 
understanding of the change in compositional pattern over time. Finally, a special case 
of segmented regression has been proposed to model both the time of change and the 
change in pattern. This model can be used to estimate the age for the unknown tephras 
using Bayesian statistical calibration. 
 
Kew words: Tephrochrology; Discriminant function analysis (DFA); Change-point 
problem; Bayesian statistical calibration; Segmented regression. 

 
 
 
1   Introduction 
 
In the past, tephrochrology, the dating of volcanic eruptions by the study of tephras (volcanic ashes), 
relied largely on radiocarbon dating to suggest a likely candidate eruption followed by comparing the 
geochemical characteristics of unknown tephras with reference to tephras from a suspected source using 
mean and standard deviations of major oxides, plus binary and ternary plots of the selected major oxides 
(Charman & Grattan, 1999). Clearly, such a type of analysis does not allow the dating of volcano ashes 
directly, as it still requires a high input of radiocarbon analyses to provide an initial likely candidate 
eruption and it is very dependent on the accuracy of those age estimates. Besides, as more tephras are 
discovered, the pattern of deposition becomes more complex, so this approach is no longer working as 
effectively as before. Moreover, this analysis is too subjective and relies on the judgement of individual 
researchers. Different geologists may select different sub-compositions to compare in the analysis due to 
the absence of clear guideline for the selection of sub-compositions, and different conclusions may be 
drawn. It does not provide any quantitative assessment of the best discriminating oxides or the probability 
of correct identification of a given tephra. The robustness of such subjective comparisons is surely in 
doubt. Although this approach may be useful as an ad-hoc comparison, it does not properly utilize the full 
complement of geochemical information available. Therefore, geologists always proposed the use of 
statistical technique to make the process more scientific and objective.  
 
The application of DFA is not a new idea in the field (Borchardt & others, 1972; Stokes & Lowe, 1988; 
Forggatt, 1992; Charman & Gartten, 1999). The analysis consists of two parts (Khattree & Naik, 2000; 
Timm, 2002). In the first part, a series of discriminant functions, which are linear combinations of the 
major oxides, is derived from the reference set of data from a series of known tephras. These functions 
form the classification model to be applied to the analysis. The linear combination of the major oxides 
allows a more effective use of the information inhered in the compositional data set. Usually, the first 
several functions are already enough to explain up to 90% of the variation (Charman & Gartten, 1999). 
Therefore, instead of working with a large number of oxides scores, one or two canonical variables 
containing most of the chemistry information are analyzed to understand the difference in compositions. 
Differences between each pair of known tephras can be measured by the Mahalanobis distance squared 
statistics (D2). The separation of the tephras can be displayed graphically on discriminant function axes. 
In the second part of the analysis, these derived discriminant functions were applied to geological data 
from unknown tephras. With this type of analysis, unknown tephras could be identified to the reference 
set with an objective probability of misclassification.  
 
Results of the first part of analysis in four different compositional datasets have been demonstrated in the 
third section, whereas the information about the four datasets and the manipulation of the data before 



analysis is found in the coming section. The canonical variables from the analysis have been further 
investigated. It shows a constantly repeating pattern for the first canonical variable over time among the 
four datasets. The variable decreases linearly over time, jumps abruptly after a period of time, and then 
decreases linearly with a similar slope again. This suggests that the composition inside the volcano 
changes over time in a constant manner with an event occurs that changes the base composition; probably 
these may be related to the injection of raw material inside the earth. Change-point analysis (Chen & 
Gupta, 2000) can be applied here in order to model the repeated changing pattern. It may be useful to 
estimate the time of abrupt jump, the level of jump and the pattern between each jump, as these may give 
information about the occurrence of volcano eruption. A special case of segmented regression (Mahmoud, 
2004) has been proposed in the fourth section. This model can be used to estimate the age of unknown 
tephras by calibration (Alfassi & others, 2005). The second part of DFA and estimation of age of 
unknown tephras by calibration with the first canonical variable have been done for one of the four 
datasets. Comparison of results is found in the fifth section. Finally, conclusion for the whole research is 
given in the sixth section.   
 
 
2   Data description and data pre-treatment 
 
Four compositional datasets have been studied in the analysis. They represent the constituencies of major 
oxides of two different types of tephras, black ashes and pumice layers from Mountain Ruapehu in New 
Zealand and Mountain Rainier in USA.   
 
2.1   Data description 
 
Ten most commonly used major oxides (Shane & Froggatt, 1994; Cronin and others; 1996) have been 
chosen to be analyzed in the study. The average chemistry for the two types of tephras from the two 
mountains is shown in the following table. 
 

Table 1. Average chemistry for the two types of tephras from the two mountains. 
 

New Zealand U. S. A 
Black ashes Pumice layers Black ashes Pumice layers 

Oxide wt. % 

Mean s. d. Mean s. d. Mean s. d. Mean s. d. 
SiO2 65.01 2.21 65.64 5.06 69.53 6.05 64.09 5.46 
Al2O3 14.61 0.80 15.10 1.52 14.47 2.26 15.49 1.81 
TiO2 1.12 0.15 0.80 0.28 1.05 0.48 1.16 0.33 
FeO 6.14 0.70 4.59 2.03 3.15 1.66 5.15 1.57 
MnO 0.21 0.13 0.16 0.09 0.14 0.09 0.17 0.10 
MgO 1.66 0.68 1.54 1.13 1.01 1.27 2.04 1.37 
CaO 4.14 0.95 3.91 1.79 2.86 1.89 4.25 1.97 
Na2O 3.11 0.55 3.24 0.50 3.88 1.08 3.55 0.50 
K2O 2.90 0.56 2.98 0.87 3.15 1.04 2.53 0.82 
Cl 0.13 0.08 0.19 0.08 0.12 0.15 0.16 0.08 

sample size 238 130 324 145 
 

To allow comparisons of the compositional patterns over time, there should be enough samples of tephra 
units from different time in each reference set and number of individual shards in each tephra (Table 2). 
Besides the four reference sets, the unknown set for New Zealand black ashes has also been included to 
demonstrate the second part of DFA and the estimation of the unknown age by calibration. A very 
approximate age has been given as a reference for the calibration. 



Table 2. Information about each tephra unit for the four reference sets. 
 

New Zealand U. S. A. 
Black ashes Pumice layers Black ashes Pumice layers 

Tephra unit age (ka) n Tephra unit age (ka) n Tephra unit age (ka) n Tephra unit age (ka) n 
TF19 0.01 17 OK(6) 10.1 3 R029 0.4 33 R310 4.7 23
TF14 0.4 11 OK(Mg) 10.1 12 R0930 0.4 9 R036 5 9 
TF10 0.5 12 OK2 10.1 13 R021 0.5 20 R05 5 5 
TF9 0.55 20 OK3 10.1 10 R0820 1.1 32 R301 5.5 26
TF8 0.6 8 BL17 10.8 11 R08 2.3 28 R013 6 14
TF7 0.63 19 BL15 12 17 R024 2.5 22 R035 6 25
TF6 0.65 16 BL13 13 21 R0763 2.5 10 R015 6.4 8 
TF5 0.7 15 BL11 14 9 R064 2.53 12 R037 6.4 11
TF4 0.83 26 BL6 16 10 R065 2.55 26 R025 6.5 13
TF2 1.8 10 BL5 17 10 R031 2.7 22 R02000 8.75 11
   BL4 17.9 4 R03000 3 18    
   BL3 19 10 R09 4.8 27    
      R034 6.43 20    
      R032 6.48 30    
         R01020 6.55 15       

 Sum  144    Sum 130   Sum  324   Sum 145
n=no. of individual shards 

 
Table 3. Approximate age and no. of individual shards in each tephra unit for the unknown set of New Zealand black ashes. 

 
Tephra unit appro. Age (ka) n 
NZ08 0.7 5 
NZ359 0.75 17
NZ361 0.76 25
NZ374 0.8 23
NZ500 0.5 14

 Sum 84
 
2.2   Data pre-treatment 
 
One of the conflicting issues in comparison of geochemical microprobe data is that of the data pre-
treatment (Charman & Grattan, 1999). It is basically due to the very important characteristic of 
compositional vector; each variable represents a proportion of some whole. Therefore, all value sum up to 
a constant, which is the unit-sum constraint as mentioned by Aitchison (1986). Since then, lot of 
researchers have started to doubt about the correctness of applying standard unconstrained statistical 
analysis directly to the constrained compositional dataset (Aitchison, 2003). Obviously, manipulation of 
the dataset should be done prior to the analysis in order to switch the compositional dataset from its 
sample space to the real number space, which is assumed in our simple multivariate analysis.    
 
2.2.1   Log-ratio transformation 
 
According to Charman and Gratten (1999), data is usually expressed as either raw percentage data or 
normalized to 100% total. Hunt & Hill (1993) suggest the former while the INQUA guideline 
recommends the latter (Forgatt, 1992). Whichever approach is adopted, the famous problem of a constant 
sum constrict exists (Aitchison, 1983; Stokes & Lowe, 1988). Aitchison (1983) suggest the use of log-
ratio transformations, the additive log-ratio transformation alr(x) = [log(x1/xD) log(x2/xD) … log(xD-1/xD)] 
and the centered log-ratio transformation clr(x) = [log(x1/g(x)) log(x2/g(x)) … log(xD/g(x))], where g(x) 
denotes the geometric mean of the D components of the major oxides x. 
 



In the centered log-ratio transformation, it has the disadvantage that the covariance matrix formed based 
on such transformation is singular, while the operational problem of the additive log-ratio transformation 
is that a common divisor has to be chosen. As proved in the monograph of Aitchison (1986), the choice of 
common divisors would not affect the results of analysis due to scale invariance property, so the choice 
could be arbitrary, but the clear disadvantage of the additive log-ratio transformation is that the chosen 
common divisor could not be used in the analysis. Therefore, some geologists resist the log-ratio 
transformation and continue to analyze the data with the pathological approach (Aitchison, 2003). To 
allow consensus between statisticians and geologists, the selected common divisor for the log-ratio 
transformation should be of moderate abundance and relatively small variance. As a result, Cl was chosen 
to be the common divisor (table 1).     
 
2.2.2   Treatment of missing data 
 
Another common problem in dealing with compositional data analysis is the problem of missing data, 
rounded or trace zeros for those missing due to a very infinitesimal value below detection level and 
essential zeros for those which is truly zero (Aitchison, 1986). A common approach suggested in the 
monograph of Aitchison (1986) is simply replacing the zeros by half of the lowest possible value 
observed. More advanced and sophisticated zero replacement strategies have been introduced by other 
researchers recently (Fry and others, 2000) and even in last conference (Aitchison & Kay; 2003; Bacon-
Shone; 2003; Martin-Fernández and others, 2003). However, as shown in the analysis by Stokes and 
Lowe (1988), the presence of multivariate outliers had only minor effects on the performance of 
discriminant function procedure. Therefore, the simple replacement method is still in use by most 
geologists and also in this study.  
 
 
3   Results of the first part of DFA 
 
The DFA performs quite well in all the four datasets. It could discriminate between those tephra units in 
all the four data sets even with just the first two components. The first two canonical variables explain up 
to nearly 80% (table 4) of the variation in the compositional pattern. Moreover, it is obvious that there is a 
clear pattern of moderate changing patterns of the first canonical variable for all the four cases, while 
there is not a common pattern observed from the case for the second canonical variable. It appears that the 
first canonical variable decreases linearly with time, jumps abruptly at some time point, and then 
decreases linearly again. This fact is very useful for setting a mathematical model to analyze the change 
of compositional pattern over time.   
 

  Table 4. Cumulative proportion of variation explained by the first two canonical variables. 
 

New Zealand  U. S. A. cum. prop. of 
explained variation Black ashes Pumice layers Black ashes Pumice layers 

1 0.5265 0.7268 0.6724 0.6394 
2 0.7592 0.83 0.8357 0.8616 

 
3.1 Black ashes from New Zealand 
 
From the figure 1A, at the first sight, it seems as if that the first canonical variable decreases from time = 
0 to time = 0.83, and then increases again to the same level as the beginning at time = 1.8, but the 
problem is that no data is actually available between time = 0.83 and time = 1.8. Therefore, we just 
focused on the pattern up to time = 0.83 (fig. 1B). It is obvious that there are two jump-points, one is 
between time = 0.55 to time = 0.6, the other one is after time = 0.83, but there may also be one jump-
point between time = 0.01 to time = 0.4, so there may be two or three change points existed in this cases. 
For the second canonical variable, the scatter plot is just like the bottom part of an upward-opened curve 
of a quadratic function, the value decreases moderately to the minimum point, and then increases 
moderately again. There is not a clear change point over time.    
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Figure 1: Scatter plots of the first two canonical variables against time for New Zealand black ashes: A. with time = 1.8 B. without 

time = 1.8 
 

3.2 Pumice layers from New Zealand 
 
For the first canonical variable, three obvious change-points could be noted, the first one is between time 
= 10.8 and time = 12, the second one is between time = 13 and time = 14, and the last one is between time 
= 17.9 and time = 19. Besides, there may be a change point between time = 14 and time = 16. Altogether, 
there may be three or four change points in the whole process.  
 
For the second canonical variable, the pattern is similar to the one of New Zealand black ashes. It is a bit 
like the patterns of sine-cosine function, the value decreases moderately from a “peak” at time = 10 to the 
local minimum at time between 12 and 13, and then increases moderately again to the “peak” at time = 14. 
The pattern roughly repeats between time = 14 and time = 19.  
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Figure 2: Scatter plots of the first two canonical variables against time for New Zealand pumice layers 
 



3.3 Black ashes from U. S. A. 
 
The pattern for both canonical variables is not very clear for the U. S. A. black ashes (fig. 3). It may be 
because there is not an evenly distributed time for the available tephra units. No much chemistry 
information is available after time = 3.5. For the first canonical variable, the changing pattern could be 
seen from time = 0.4 to time = 3.4, there should be a change-point between time = 1.1 to time = 2.3. After 
time = 3.4, the value for the first canonical variable seems to remain at the same level, while for the 
second variable, the value stays at similar level for all time points.      
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Figure 3: Scatter plots of the first two canonical variables against time for U. S. A. black ashes 
 
3.4   Pumice layers from U. S. A. 
 
For the first canonical variable, it is obviously that there is at least one change point, which may be 
between time = 5 to and time = 5.5 or between time = 5.5 to time = 6, but it seems as if that the value 
decrease continuously from time = 6 to the end point at time = 8.75, but it is inconclusive whether there is 
any change-points between time = 6.5 to time = 8.75 as no information is available. For the second 
variable, the pattern is different from those in pervious examples. It seems as if that the value decreases 
moderately and becomes stabilized at the end.      
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Figure 4: Scatter plots of the first two canonical variables verse time for U. S. A. pumice layer 
 
 
 
4   Change point problems and calibration 
 
In order to understand the changing pattern including the time of abrupt jump, the level of jump and the 
pattern between jump points, a specific mathematical model based on the methodology of change 
problems has been studied. This model can be used to estimate the age of unknown tephra by calibration.  
 



4.1 Segmented regression technique found in literature 
 
This model is commonly used in the field of industrial management or quality control in order to ensure a 
smooth process of production and stable quality of the products. The simple s-segmented piecewise 
regression model given in Mahmoud (2004) ’s dissertation is that:  
 

Yi = A01 + A11Xi + εi, θ0 < i ≤ θ1 
Yi = A02 + A12Xi + εi, θ1 < i ≤ θ2 

. 

. 

.   
Yi = A0s + As1Xi + εi, θs-1 < i ≤ θs    (1) 

 
where i = 1, 2, …, N and θj ‘s are the change points between segments (usually θ0 = 0 and θs = N) and the 
εi ‘s are assumed to be i.i.d N(0, σj

2), where σ2
j is the segment error term variance, where j = 1, 2, …, s. In 

simple terms, in segment regression modeling, the parameters of intercepts and slopes may change 
suddenly at some points. This technique could be used to estimate the number of segments s and the 
locations of the change point θj ‘s. 
  
4.2 Proposed segment regression for the analysis 
 
As mentioned in section three, a clear changing pattern is observed for the first canonical variable. In 
order to set a mathematical model for such a changing patterns, several assumptions have been given 
based on the observation. 
 

• The slope parameter is constant over time. 
• The jump time may be related to the occurrence of volcanic eruption, so it follows gamma 

distribution in the whole process. 
• The change of intercept parameter is due to abrupt jump, which may be related to the level of 

volcanic eruption, so it follows normal distribution in the whole process. 
• The initial time point is at time = 0 

 
Based on the above assumptions, the following mathematical model has been set up: 
 

Yi = A01 + A1ti + εi, R0 < ti ≤ R1 
Yi = A02 + A1ti + εi, R1 < ti ≤ R2 

. 

. 

.   
Yi = A0s + Asti + εi, Rs-1 < i ≤ Rs    (2) 

 

where A0i = A01 + c1 + c2 + … + ci-1 for i from 2 to s and ci is the change of intercept from i – 1th segment 
to ith segment,  that is the jump level which is assumed to follow iid N(µc, σc

2), where µc and σc
2 are the 

mean and variance of the jump level; εi ‘s are assumed to be iid N(0, σj
2), where σj

2 is the segment error 
term variance as the same as the simple model quoted in previous section; R0 is initial point of the process, 
which is assumed to be zero, Ri is the ith change-point number of time points and ri = Ri – Ri-1 is the length 
of time for the ith segment, which is assumed to follow iid Γ(α, β), that is, Ri ~ Γ(iα, β). 
 
4.3 Estimation of model parameters and calibration of age of unknown tephras 
 
To fit the dataset, the parameters for all the distributions in the model have to be estimated. Bayesian 
approach (Lee, 2004) has been applied for the convenience of combining the procedure of estimation of 
the model parameters and calibration of age of the unknown tephra. Due to special characteristics of the 
segmented regression model, multiple solutions may be arrived in the calibration procedure. With 
Bayesian approach, those impossible solutions could be eliminated or pulled down by giving a suitable 
prior distribution to the calibrated age. The analysis could be easily done by WinBUGS, a piece of 
computer software for the Bayesian analysis of complex statistical models using MCMC method and 
Gibbs sampler, which could be downloaded in the website of the Biostatistics Unit of the Medical 
Research Council in the University of Cambridge (http://www.mrc-bsu.cam.ac/bugs). With such software, 



estimation for model parameters model and calibration of the age of unknown tephras could be done 
simultaneously by simulation based on the prior distribution and the model given. Non-informative prior 
have been set for all the parameters, while a uniform prior has been given to the calibration with adjusted 
lower and upper bound for each case of unknown tephra. The syntax for the analysis could be found in 
the appendix.   
 
 
5 Aging the unknown tephras   
 
As mention in the introduction section, to age the unknown tephra, the second part of the DFA is helpful 
in correlating the unknown tephra to the reference set. On the other hand, it could be done by calibration 
of the first canonical variable to the age of the tephra with the proposed segmented regression. The box-
plot of the first canonical variable is shown in the following figure. It shows that NZ08 and NZ500 are far 
different from NZ359, NZ361 and NZ374. It could be further confirmed by finding the value of D2 (table 
5), NZ359, NZ361, and NZ374 are similar, but NZ08 and NZ500 are far away from the other tephras. The 
separation of the three different groups of unknown tephra is further shown by the scatter plot of the first 
two canonical variables (fig. 6).    
 

 
 
 

Figure 5: Box-plot of the first canonical variables for U. S. A. pumice layer 
 

  Table 5. Mahalanobis distance squared statistics (D2) among unknown tephras. The cells with the largest four values are shaded in 
pink, while those with the least three values are shaded in orange 

 
  NZ08 NZ359 NZ361 NZ374 NZ500
NZ08 0 8.99 9.17 20.45 78.16
NZ359 0 2.23 6.18 70.44
NZ361 0 1.89 115.26
NZ374 0 145.37
NZ500 0
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Figure 6: Scatter plot of the first two canonical variables for U. S. A. pumice layer. The three groups of unknown tephras are 
separated by the three ellipses. 

 
5.1 Results of the second part of DFA 
 
The assignation of the unknown tephra units to the reference set could be found in the following table, the 
classification of the unknown tephras to the reference set is not very clear in the analysis, more than one 
groups could be assigned to each tephra, and even for NZ08, which only possesses five tephra units. 
NZ500 could be assigned to three groups including TF10, TF9 or TF4; NZ361 could be assigned to TF9 
or TF4, while NZ08 is assigned to TF9, NZ359 and NZ374 are assigned to TF4. It may be because TF4, 
TF9 and TF10 are close to each others (table 7). D2 could be used as a criterion to further decide if the 
only one reference set is allowed to identify each unknown tephra.   
 

Table 6. Assignation of the unknown tephra units to the reference set. The possible identified reference sets for each unknown 
tephra are highlighted in pink.  

 
Sample TF19 TF14 TF10 TF9 TF8 TF7 TF6 TF5 TF4 
NZ500   1 4 5     4 
NZ08    3    1 1 
NZ359    6     11 
NZ361    12     13 
NZ374    6     17 

 



Table 7. Mahalanobis distance squared statistics (D2) between the unknown tephras and reference set and among the reference set. 
The cells with D2 less than 5 are highlighted in pink. 

 
Reference set D2 

TF10 TF14 TF4 TF5 TF6 TF7 TF8 TF9
NZ08 21.60012 115.97753 15.31083 6.05909 65.63358 23.24747 533599 1.74661
NZ359 19.64835 78.99815 1.11433 208.7856 194.40084 71.50327 122248 3.94546
NZ361 27.40658 134.01035 1.44096 107.93689 182.5308 65.13286 63578 6.00691
NZ374 20.1007 193.21254 3.8624 221.74358 178.51582 63.31685 6046 8.93996

Unknown 
tephra 

NZ500 8.79423 15.387 14.0904 115.09422 219.48576 92.22103 263250 3.73382
TF10 0 28.62199 26.39923 38.71744 126.9224 60.21051 624562 4.736
TF14  0 72.20409 57.25712 72.06714 32.59449 3422759 13.39212
TF4   0 112.64177 162.24598 64.81576 87384 4.42305
TF5    0 13.61556 13.25078 387530 6.64534
TF6     0 12.2045 1245109 9.39774
TF7      0 117299 7.08063
TF8       0 6.4021

Reference 
set 

TF9               0
 
5.2 Result of calibration with segmented regression model 
 
The analysis could be divided into two parts, the estimation of the parameters for the model and the 
calibration of the age to the compositional pattern of unknown tephra. 
 
5.2.1 Fitting the dataset 
 
Two change points have been estimated by the WinBUGS based on the segmented regression model. 
They are 0.3396 and 06016, which are reasonable based on the observation as mention in section 3.1. The 
fitting of the data set is quite good as observed in the figure 7. The MSEs calculated based on the 
segmented regression line have also been quoted as reference. 
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Figure 7: Scatter plot of the first canonical variables for U. S. A. black ashes (with the segmented regression line) 



Table 8: MSE calculated based on the segmented regression model 
 

MSE within TF19 TF14 TF10 TF9 TF8 TF7 TF6 TF5 TF4 
Group 1.2492 2.9608 2.2947 2.2674 7.6512 1.5672 1.698 0.3927 0.753 

Whole reference set 1.8772 
 
5.2.2 Calibration of the unknown age  
 
The kernel density for the calibrated age of the unknown tephras could be found in the following. As one 
the first canonical variable is used in the analysis, the result is quite similar for NZ500 and NZ08, as well 
as NZ359, NZ361 and NZ374. The possible calibrated age is picked up by the time at which the kernel 
density reached to the peak (table 8). 
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Figure 8: Kernel density of the calibrated age for the five unknown tephras (st1: NZ500, st2: NZ08, st3: NZ359, st4: NZ361, st5: 
NZ374) 

 
Table 9: Possible calibrated age for the five unknown tephras 

 
Possible calibrated age 

NZ500 0.2558 0.4872 0.7153
NZ08 0.2509 0.4859 0.7173
NZ359 0.5868 0.8161
NZ361 0.5894 0.8184
NZ374 0.5947 0.8233  

 
5.3 Comparison of the results from the two methodologies 
 
In fact, the two results agree with each other, as the possible calibrated age is not too far from the age of 
the identified reference tephra (table 9). However, the second approach has an advantage that it allows a 
better use of information available from the reference set. It could pick up value of age other than those 
from the reference set. For instance, although we have not get any reference tephra between time = 0.01 
and time = 0.4, as the value of the variable could be estimated with the segmented regression, so it allows 
a possible calibrated age to be 0.2558, which is between 0.01 and 0.4.     
 



Table 10: Comparison of the results for estimating the unknown age by the two methodologies. The agreed classification and 
estimation are shaded in the same colours.  

 
  TF14 TF10 TF9 TF5 TF4

  0.4 0.5 0.6 0.7 0.83
Possible Calibrated Age 

NZ500 1 4 5   4 0.2558 0.4872 0.7153 
NZ08   3 1 1 0.2509 0.4859 0.7171 
NZ359   6  11  0.5868 0.8161 
NZ361   12  13  0.5894 0.8184 
NZ374     6   17   0.5947 0.8233 

 
 
6 Conclusion 
 
In this paper, the main aim is to solve the geological problem of aging the unknown tephra. Two 
methodologies of identification to the reference set by DFA and calibration of the first canonical variable 
have been demonstrated. The statistical methodology of change-point problem is useful in understanding 
the changing pattern of the canonical variable over time and the proposed segmented regression 
developed based on the change-point analysis enhances a better use of the chemistry information 
available from the DFA. It is a more flexible estimation of the calibrated age other than just a mapping of 
the unknown tephra to the reference set. As shown in section 5.1, it is not advisable to put tephras with 
similar age and compositional pattern in the reference set, as it will result in an unclear classification to 
several groups in the reference set. A secondary DFA need to be done until most of the tephra units of the 
unknown tephras could be assigned to the same reference group. Such problem would not exist in the 
case of calibration with segmented regression. The more chemistry information is allowed, the more 
precise segmented regression is formed, and results a more accurate calibration. The only problem is a 
prior distribution of the calibrated age has to be given in order to eliminate those impossible solutions. 
Nevertheless, the prior distribution could be very broad, and even a very approximate age or just a 
possible range for the calibrated age could be used to decide the prior distribution. Although the result 
showed the feasibility to apply calibration to estimate the unknown age, the accuracy of the calibrated age 
is still in doubt. It is highly dependent on the quality of the data and the accuracy or correctness of 
modeling the changing pattern with segmented regression model based on those assumptions. Therefore, 
more research needs to be done on such aspects to check the accuracy of the proposed segmented 
regression model. We hope that such model and methodology would be useful to the geologists in further 
research, to allow them to age the unknown tephra, to understand the changing pattern, and even to 
predict the occurrence of volcanic eruption better. 
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Appendix 
 
Syntax for the analysis by WinBUGS 

 
model  {  
 beta <- mul * taul 
 alpha <- pow(mul, 2) * taul 
 for (i in 1:Ns) { 
  r[i] ~ dgamma(alpha, beta) } 
 cumr[1] <- r[1] 
 for (j in 2:Ns) { 
  cumr[j] <- cumr[j-1] + r[j] } 
 for (k in 1:Nt) { 
  for (l in 1:Ns) { 
   diff[k, l] <- cumr[l] - t[k] 
   one[k, l] <- step(diff[k, l]) } 
  none[k] <- sum(one[k, ]) 
  s1[k] <- Ns -none[k] 



  mu[k] <- a0 + a1 * t[k] + s1[k] * muc 
  tau[k] <- taue * tauc / (tauc + s1[k] * taue) 
   for (m in 1:N[k]) { 
    can[m, k] ~ dnorm(mu[k], tau[k]) } } 
 mul ~ dgamma(1.0E-3, 1.0E-3) 
 sigl <- 1 / sqrt(taul) 
 taul ~ dgamma(1.0E-3, 1.0E-3) 
 a0 ~ dnorm(0, 1.0E-6) 
 a1 ~ dnorm(0, 1.0E-6) 
 muc ~ dnorm(0, 1.0E-6) 
 sigc <- 1/sqrt(tauc) 
 varc <- sigc * sigc 
 tauc ~ dgamma(1.0E-3, 1.0E-3) 
 sige <- 1/sqrt(taue) 
 vare <- sige * sige 
 taue ~ dgamma(1.0E-3, 1.0E-3) 
  S[1] <- 0.01 
  S[2] <- cumr[1] 
  S[3] <- cumr[2] 
  S[4] <- 0.83 
   for (u in 1:3) { 
    var1[u] <- vare + (u-1) * varc 
    tau1[u] <- 1 / var1[u] 
    p1[u] <- (S[u+1] - S[u]) / ( S[4] - S[1]) 
    mu1[u] <- a0 + a1 * t1[u] + (u-1) * muc 
    t1[u] ~ dunif(S[u], S[u+1]) 
    mu2[u] <- a0 + a1 * t2[u] + (u-1) * muc 
    t2[u] ~ dunif(S[u], S[u+1]) } 
   for (o in 1:2) { 
    p2[o] <- (S[o+2] - S[o+1]) / (S[4]-S[2]) 
    mu3[o] <- a0 + a1 * t3[o] + o * muc 
    t3[o] ~ dunif(S[o+1], S[o+2]) 
    mu4[o] <- a0 + a1 * t4[o] + o * muc 
    t4[o] ~ dunif(S[o+1], S[o+2])  
    mu5[o] <- a0 + a1 * t5[o] + o * muc 
    t5[o] ~ dunif(S[o+1], S[o+2]) } 
    for (p in 1:N1) { 
     for (q in 1:3) { 
      can1[p, q] ~ dnorm(mu1[q], tau1[q] } } 
    for (a in 1:N2) { 
     for (b in 1:3) { 
      can2[a, b] ~ dnorm(mu2[b], tau1[b]) } } 
    for (c in 1:N3) { 
     for (d in 1:2) { 
      can3[c, d] ~ dnorm(mu3[d], tau1[d+1]) } } 
    for (e in 1:N4) { 
     for (f in 1:2) { 
      can4[e, f] ~ dnorm(mu4[f], tau1[f+1]) } } 
    for (g in 1:N5) { 
     for (h in 1:2) { 
      can5[g, h] ~ dnorm(mu5[h], tau1[h+1]) } } 
     
    sn1 ~ dcat(p1[]) 
    st1 <- t1[sn1]   
    sn2 ~ dcat(p1[]) 
    st2 <- t2[sn2]   
    sn3 ~ dcat(p2[]) 
    st3 <- t3[sn3]  
    sn4 ~ dcat(p2[]) 
    st4 <- t4[sn4] 
    sn5 ~ dcat(p2[]) 
    st5 <- t5[sn5] } 
list(mul=0.4, taul=1, a0=3, a1=-6, muc=4, tauc=1, taue=1, r=c(0.3, 0.3)) 
list(Ns = 2, Nt = 10, N1=14, N2 =5, N3=17, N4=25, N5=23) 
 
The gamma distribution is parameterized in terms of the mean length of time for each segment µl = α / β 
and precision of the length of time for each segment τl

2 = β2 / α to ensure convergences of those 
parameters.   
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