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To visualize the data with Multidimensional Scaling methods we approximate a given dissimi-

larity matrix {matrix of di�erences among observations{ to obtain a con�guration of points in

low (two) dimensional real (usually) Euclidean space. The Multidimensional Scaling methods

input is a dissimilarity matrix and to construct such a matrix a suitable measure of di�erence

between observations is needed.
In our work we discuss applications of di�erent dissimilarity measures, relations between

them and their (un)suitability in case of compositional data. We present results of Multidimen-

sional Scaling methods applied to real compositional data sets to visualize all these relations.
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coherent with the compositional nature of the data.
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1 INTRODUCTION

1.1 The sample space for compositional data

An observation x 2 IRD
+ is compositional (Aitchison, 1986) if its components are propor-

tions of some whole. Thus, their natural sample space is the simplex denoted

SD = fx = (x1; x2; : : : ; xD): xj > 0; j = 1; 2; : : : ; D; x1 + x2 + � � �+ xD = 1g: (1)

Actually, any vector of positive components w 2 IRD
+ can be projected onto the simplex

by the closure operation C(w) = (w1=
P

wj; w2=
P

wj; : : : ; wD=
P

wj): It is easy to see
that the perturbation operation

p Æ x = C(p1x1; p2x2; : : : ; pDxD) (2)

de�ned on SD � SD, and the power transformation � � x = C(x�1 ; x�2 ; : : : ; x�D) de�ned on
IR � SD, induce a vector space structure in to the unit simplex. The neutral element
of this vector space is eD :=

�
1

D
; 1
D
; � � � ; 1

D

�
and the inverse element of a composition

x 2 SD is x�1 = C
�

1

x1
; 1

x2
; � � � ; 1

xD

�
2 SD:

It is important to recall that the vector space structure
�SD; Æ; �� ; its algebraic and

geometrical concepts: vector, norm, scalar product, and distance plays a central role in
most of the statistical methods.

1.2 Multidimensional scaling (MDS) techniques

Graphical representations of multivariate data are widely used in research and applica-
tions of many disciplines. Methods used are based on techniques of representing a set
of observations by a set of points in a low-dimensional real (usually) Euclidean vector
space, so that observations that are similar to one another are represented by points that
are close together. Multidimensional scaling (MDS) techniques belong to these family of
graphical representations (Cox and Cox, 1994).

We begin with a set of n observations under consideration and between each pair of
observations (i; j) there is a measurement Æij of the dissimilarity between them. MDS
techniques search for a low dimensional (usually) Euclidean space and a set of points
in the space that represent the observations, each point represents one observation, in
such manner that the distances fdijg between points in the space approximate as well
as possible the original dissimilarities fÆijg: It is the di�erent notions of approximation
that give rise to the di�erent techniques of MDS: Metric MDS and Nonmetric MDS (for
more details see Cox and Cox, 1994). For our purpose, we focus on the metric MDS
techniques called Classical Scaling or Principal Coordinates Analysis. These techniques
assume that the dissimilarities fÆijg between observations are distances within a set of
n points in some D-dimensional Euclidean space. Then, it is possible to �nd (or to
reconstruct) a con�guration of points in a low-dimensional Euclidean space where the
equality dij = Æij holds.

1.3 Measures of di�erence

A measure of di�erence between observations plays a central role in all methods of MDS:
the input of MDS is a dissimilarity matrix and to construct such a matrix we need a
suitable measure of di�erence. Therefore, when the data are compositional a measure
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of di�erence coherent with the nature of compositions has to be applied. In the litera-
ture di�erent measures of dissimilarity between compositions have been proposed: Eu-
clidean, Aitchison's distance, compositional Kullback-Leibler divergence. . . Recent stud-
ies (Aitchison et al., 2000; Mart��n-Fern�andez et al.; 1998a, 1998b, 1999, 2001) have
shown that some of these measures are not suitable for compositional data (Euclidean,
Bhattacharyya. . . ) and some are coherent with compositional nature (Aitchison, com-
positional KL divergence. . . ). Nevertheless, results obtained applying di�erent measures
sometimes di�er much and sometimes are closely related.

In our work we'll consider four measures: Aitchison's distance, compositional KL
divergence, Bhattacharyya distance and Euclidean distance.

The Aitchison's distance (squared), deeply analyzed in mentioned recent works, is
given by

d2A(x;y) =
X�

log(xk)

g(x)
� log(yk)

g(y)

�2
; (3)

where g(x) denotes the geometric mean of compositional vector x.
The compositional KL divergence (squared), introduced in Mart��n-Fern�andez et al.

(1999), is given by

d2M(x;y) =
D

2
log

�
x

y

y

x

�
; (4)

where x

y
denotes the arithmetical Mean of the vector of ratios x

y
= (x1=y1; : : : ; xD=yD).

In the cited works it is shown that both measures are compatible with the compositional
nature of the data. The main di�erence between them is that dA is a distance but dM is
a dissimilarity { it is not metric.

Following Rao (1982) the most suitable measure of divergence between multinomial
probability distributions is the Bhattacharyya's distance given by

dB(x;y) = arccos
hXp

xk
p
yk
i
; (5)

where implicitly we consider a composition x as a vector of probabilities of a multinomial
distribution.

The Euclidean distance is most commonly used measure of di�erence in Classical
Scaling. Squared is given by

d2E(x;y) =
X

(xk � yk)
2: (6)

The Bhattacharyya and Euclidean distances are not compatible (Mart��n-Fern�andez
et al., 1998a) with the real vector space structure de�ned on a simplex and therefore
are not coherent with the nature of compositional data. But still in some cases for
some compositional data we obtain reasonable results of MDS even when we apply these
not suitable measures of di�erence. In our communication we'll found out answers to
questions: When such cases arise and what are the reasons for these exceptions?

Our strategy consists of combining the centering operation and the multidimensional
scaling. The centering operation, for the �rst time introduced in Mart��n-Fern�andez et al.
(1999), is a useful tool to treat the compositional data sets located near to the border
or to the corner of the simplex. First we consider the center of the data set X as the
compositional geometric mean cen(X) de�ned by cen(X) = C(g1; g2; : : : ; gD); where

gj =
�QN

i=1 xij

�1=N
is the geometric mean of the j-th components of all compositions x1,
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x2,..., xN in X. If we perturb the data set X by the vector cen(X)�1 the resulting data
set is centered, i.e. the center of the perturbed set cen(X)�1 ÆX is eD, the center of the
simplex. The data set is now located around the barycenter eD of the simplex. For the
four measures of di�erence described above we'll calculate and compare the dissimilarity
matrices obtained for centered and non centered data sets. With this comparison we'll
�nd out answers to above posed questions.

Also we'll carry out the evaluation of the performances of the four measures of di�er-
ence described above using the stress (standarized residual sum of squares) index de�ned
by

stress =

P
i<j (d1(xi;xj)� d2(xi;xj))

2P
i<j d

2
1(xi;xj)

: (7)

Here d1 and d2 denotes the distances between observations calculated before and after the
MDS or/and before and after performing the centering operation. This stress measure,
applied in the same manner in Mart��n-Fern�andez et al. (2001), is one of the basic
elements of multidimensional scaling theory (Cox and Cox, 1994).

2 RELATIONS BETWEENCONSIDEREDMEASURES OF DIFFERENCE

2.1 Aitchison's distance versus compositional KL divergence

In Mart��n-Fern�andez (2001) it is shown that Aitchison's distance dA (3) and composi-
tional KL divergence dM (4) are closely related. For any two compositions x, y 2 SD, it
holds that

dA(x;y) �
p
2 dM(x;y): (8)

The consequence of this property is that for any compositional data set both measures
produce similar matrices of distances. Thus, when we apply MDS with dA or dM the
results obtained will be very similar.

2.2 Aitchison's distance versus Euclidean distance

Figure 1 presents neighborhoods of di�erent points in the simplex calculated with the
Aitchison's distance (3). We see that the shape of the neighborhoods are nearly spherical
when the center of the neighborhoods is located near to the barycenter eD of the simplex.
On the other hand, when the center of the neighborhoods is near to an edge or to a corner
of the simplex the shape of neighborhoods extremely di�ers from a sphere. This fact
suggests that only when the data are near to barycenter eD we can expect some close
relation between the Aitchison's and the Euclidean distance (6).

Indeed. From an Euclidean point of view, when two observations x and y are \near"
to the center we can express them as x = eD + Æx and y = eD + Æy, where Æx and Æy
are vectors with values approximately equal to 0 and

P
(Æx)k =

P
(Æy)k = 0. Thus, it is

obvious that dE(x;y) = dE(Æx; Æy).
From compositional point of view, when two observations x and y are \near" to the

center we can express them as x = eDÆ"x and y = eDÆ"y where "x and "y are vectors with
all components approximately equal to 1=D and Æ denotes the perturbation operation (2).
Because the Aitchison distance is perturbation invariant we have dA(x;y) = dA("x; "y):

Then, if we take Æx = "x�eD and Æy = "y�eD with Taylor expansion of the logarithm
we get the approximate relation:

dA(x;y) � D dE(x;y): (9)
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Figure 1: Neighborhoods in the ternary diagram calculated with Aitchison's distance.

Thus, when we apply Classical Scaling to a compositional data set located near to the
barycenter of the simplex results using Euclidean or Aitchison's distance will be similar.

2.3 Bhattacharyya distance versus Euclidean distance

Also in the case of the Bhattacharyya distance the Figure 2 now shows that the shape
of the neighborhoods is in the same relation to the Euclidean neighborhoods as in
the Aitchison's distance case. Therefore we'll analyze the relation between the Bhat-
tacharyya distance (5) and the Euclidean distance (6) only when the observations are
\near" to the barycenter eD:

Figure 2: Neighborhoods in the ternary diagram calculated with Bhattacharyya distance.

Let's rewrite the Bhattacharyya distance in terms of the angle between vectors. From
the de�nition of the Bhattacharyya distance dB(x;y) = arccos

�Pp
xk
p
yk
�
we get

cos(dB(x;y)) =
Xp

xk
p
yk = hpx;pyi;



Some Practical Aspects on Multidimensional Scaling of Compositional Data 6

where h�; �i denotes the scalar product of vectors and px = (
p
x1; : : : ;

p
xD) is the vector

of square roots of the components. By the de�nition of the scalar product we have

hpx;pyi =k px k k py k cos\
p
x
p
y;

where k � k denotes the Euclidean norm and [� � the angle between vectors. Note
that if x is a composition then the Euclidean norm of the vector

p
x is equal to 1 and

therefore cos(dB(x;y)) = cos\
p
x
p
y. Since x;y 2 IRD

+ we obtain that dB(x;y) =\
p
x
p
y.

We see that Bhattacharyya distance between compositions x and y can be interpreted
as the angle between their projections

p
x and

p
y on the unit sphere. Therefore we

can establish a relation between dB and dE: When x and y are two observations \near"
to the barycenter eD, the angle between

p
x and

p
y is close to the Euclidean distance

between them. Applying the Taylor expansion we can show that these distances verify
the approximate relation:

dE(x;y) �
r

8

D
(1� cos(dB(x;y))): (10)

Thus, when we apply Classical Scaling to a compositional data set located near to the
barycenter using Euclidean or Bhattacharyya distance similar results are expected.

3 CASE STUDIES

3.1 Lyons West data set

The data set Lyons West, analyzed recently in Mart��n-Fern�andez et al. (2001), are
gathered from 76 wells in the Lyons West oil �eld, Rice County, Kansas (for more details
see Mart��n-Fern�andez et al., 2001). In this compositional data set we consider three
components: oil, water, and rock denoted O;W; and R respectively. Figure 3 shows the
data set in the ternary diagram (units are represented by `�'). The third components
R of the data takes large values and that's why the data set is located near to the R
corner. The shape of the data set suggests that some linear relation exists between the
components of the data. This kind of relation called logcontrast was analyzed deeply
in Aitchison's book (Aitchison, 1986). In our case we can consider that there exists a
vector a = (a1; a2; a3) with

P
ai = 0 such that the logcontrast equality

a1 log(O) + a2 log(W) + a3 log(R) = � (11)

holds. It is easy to see that if an observation x veri�es the logcontrast equation (11)
then any perturbed composition p Æ x veri�es the logcontrast equation

a1 log(O) + a2 log(W) + a3 log(R) = �+
X

aipi:

Thus, any \linear" data set preserves its linearity after an arbitrary perturbation. In
particular, the linearity is preserved by the centering operation. In Figure 3 we can see
that the centered data set (units are now represented by `Æ') preserves the linear pattern.
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O

W R

Figure 3: Lyons West data set in the ternary diagram (`�': initial data set; `Æ': centered data set).

First, to illustrate the suitability of the selected measures we have calculated the values
of the distances between any pair of observations of the Lyons West data set, before and
after centering operation is applied (see Figures 4 and 5).

In Figure 4A and 4B for the Aitchison's distance and the compositional KL diver-
gence, respectively, we see that these two measures are perturbation invariant : for any
pair of observations the values of distances before and after centering are the same.

A B

Figure 4: Distances before and after centeringLyons of West data set. A: dA; B: dM.

But in the plots 5A and 5B of the next �gure we can see, respectively, that this is not
the case for the Euclidean and Bhattacharyya distance: the distances calculated for the
same pair of observations before and after centering operation di�ers. Therefore the
Aitchison's distance and the compositional KL divergence are, but the Euclidean and
Bhattacharyya distance are not compatible with compositional nature of the data.
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Figure 5: Distances before and after centering of Lyons West data set. A: dB; B: dE.

Second, to illustrate the above derived relations (8, 9, 10) between the discussed distances
we compare, for the four measures, the values of the distances between all pairs of
observations of the centered Lyons West data set. In a plot we represent the relations
between the values calculated with one measure versus another { Figure 6 shows these
plots. We can observe in Figure 6A how closely related is the Aitchison's distance dA
to compositional KL divergence dM following the relation (8). In the Figure 6B we
have plotted the compositional KL divergence (squared) versus the Aitchison's distance.
Obviously, because (8) holds the shape is very similar to the line y =

p
2x. This �gure

shows that squaring the dissimilarity dM we obtain a measure d2M also closely related
to the metric dA: Thus, we expect reasonable results of Classical Scaling applied to the
dissimilarity matrix calculated with d2M:
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Figure 6: Distances between observations of Lyons West data set. A: dM versus dA; B: Squared dM
versus dA.

In Figure 7A we can observe that the relation (9) is veri�ed (when previously, we have
centered the data set). In this �gure we have drawn the straight line y = 3x (dotted line)
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to emphasize this relation. Figure 7B illustrates the relation (10) between the distances

dB and dE: Here we have represented with a line the function y =
q

8

3
(1� cos(x)) { note

that this line appears very similar to straight line y = x for the values near to zero.

A B

Figure 7: Distances between observations of Lyons West data set. A: dE (centered data set) versus dA;
B: dB (centered data set) versus dE (centered data set).

With the four measures dA; dM; dB; and dE we have calculated, respectively, the
values of the distances between any pair of observations of the Lyons West data set and in
this manner we have obtained four dissimilarity matrices. To these dissimilarity matrices
we have applied the Classical Scaling method resulting four con�gurations of points in
three dimensional Euclidean space. In Figure 8 we represent the �rst two coordinates of
these con�gurations. To carry out all this analysis we've used the functions included in
the package S-plusr.

Figure 8A corresponds to the Aitchison's distance. If we just visually compare ob-
tained new con�guration with the centered data set of the Figure 3 we see that in this
case Classical Scaling gives us reasonable results. In Figure 8B con�guration obtained
using the compositional KL divergence dM is shown. Here we observe that the results
are not reasonable { linearity is lost, what could be a consequence of the fact that dM is
not metric.

Figures 8C and 8D show results applying, respectively, the Bhattacharyya distance
dB and Euclidean distance dE. With suitable left-right transformation of these �gures
we obtain the same shape as in the case of Aitchison's distance.

We conclude that in this two last cases the obtained results are reasonable. But still
it is important to compare also the scales of the axis at these three �gures.
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Figure 8: Results of Classical Scaling applied to Lyons West data set { �rst two coordinates of the
resulting con�guration. A: dA distance; B: dM dissimilarity; C: dB distance; D: dE distance.

Following Gordon's advise (Gordon, 1999) for nonmetric dissimilarities applied in Clas-
sical Scaling we apply Classical Scaling also to the squared compositional KL divergence
d2M: In addition, we apply Classical Scaling to the centered Lyons West data set us-
ing the dissimilarity matrices calculated with distances dB and dE: Obtained results are
shown in the Figure 9. For straightforward comparisons we have included in the �gure
also the plot obtained with Aitchison's distance { Figure 9A. In this four �gures we can
observe con�rmations of the approximate relations (8, 9, 10) between the measures, we
can see that now also the d2M gives reasonable results and di�ers from the con�guration
obtained applying Aitchison's distance only on the scales of axis. We note also that
results obtained applying dB and dE are now even more similar.
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Figure 9: Results of Classical Scaling applied to Lyons West data set { �rst two coordinates of the
resulting con�guration. A: dA distance; B: dM dissimilarity (squared); C: dB distance (centered data
set); D: dE distance (centered data set).

The main feature of results on Lyons West data set is that we obtain reasonable results
applying non suitable measures dB and dE: We'll see that this is an exception and that
the reason for this exceptional behavior is the linear pattern of the data. Linearity is
preserved also by the centering operation and thus results obtained on centered data are
reasonable for the same reason { linearity!

These results and all above mentioned aspects are con�rmed also by the stress co-
eÆcient (7). This coeÆcient is a dissimilarity measures between two matrices of dis-
tances and it takes values between 0 and 1: Therefore the stress values near to 0 means
that considered matrices of distances are very similar. Table 1 shows the value of the
stress between matrices of distances calculated with the compositional KL divergence
and Euclidean distance versus the matrice calculated with Aitchison distance, and Bhat-
tacharyya distance versus Euclidean distance. We observe that accordance between
Aitchison's distance dA and Euclidean distance dE is better after the centering operation.
The same goes for the Bhattacharyya distance dB versus Euclidean distance dE. Table
2 presents, for each observed measure respectively, the value of the stress between the
matrice of distances of the original data set and the matrice of distances in Euclidean
con�guration resulting the Classical Scaling method. These stress values measure an
\error" of the MDS technique. We see that the error of Classical Scaling is extremely
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low for all four measures considered. Note that with the non-metric Compositional KL
divergence dM the worst result is obtained.

Table 1: Performance of relation between considered dissimilarity measures as measured by the stress
for Lyons West data set.

Data set dA vs dM dA vs dE dA vs dE dB vs dE dB vs dE
before after before after

centering centering centering centering
Lyons West 0:3043 0:9197 0:6861 0:3804 0:1394

Table 2: Performance of Classical Scaling applied to Lyons West data set measured by the stress for
considered dissimilarity measures.

Data set dA dM dB dB dE dE
before after before after

centering centering centering centering
Lyons West 1:7� 10�6 0:0372 2:4� 10�5 7:2� 10�5 2:0� 10�6 1:1� 10�6

To con�rm that the linearity of the Lyons West data set is the main cause of above
results, we'll analyze other data set that has no linear pattern.

3.2 Halimba data set

The data set called Halimba described in Mateu-Figueras et al. (1998) corresponds to
the subcomposition of the �rst three components (Al2O3; SiO2; F e2O3) of a composition
(Al2O3; SiO2; F e2O3; T iO2; H2O;Res6) of 332 samples from 34 core-bore holes in the
Halimba bauxite deposit in Hungary. Figure 10 shows this data set in the ternary
diagram (units are represented by `�') and the data set resulting the centering operation
(units are now denoted by `Æ').

AL2O3

SIO2 FE2O3

Figure 10: Halimba data set in the ternary diagram (`�': initial data set; `Æ': centered data set).
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Note that the second component \SiO2" of the data takes low values, thus the data
set is located near to the edge. Because of our Euclidean seeing we can recognize the
true pattern of the data set only when it is centrally located and not when its near to
the border (see Figure 1). Thus, we can detect the true pattern only after applying the
centering operation. In the centered data set we see that the largest variability appears
in the second component \SiO2" and that the ratio between others two components is
nearly constant.

To compare performances of discussed measures: dA; d
2
M; dB; and dE we have calcu-

lated, respectively, the values of the distances between any pair of observations of the
Halimba data set and to the dissimilarity matrices obtained we have applied the Classical
Scaling method. Figure 11 shows four resulting con�gurations.
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Figure 11: Results of Classical Scaling applied to Halimba data set { �rst two coordinates of the
resulting con�guration. A: dA; B: d

2
M
; C: dB; D: dE.

It is very clear that the Bhattacharyya distance dB and the Euclidean distance dE do not
give reasonable results. This two measures do not take into account the ratios between
components of the data and therefore are not suitable for measuring distances between
compositions (Mart��n-Fern�andez et al., 1998a).

To illustrate further this phenomena we have applied Classical Scaling also to the
centered Halimba data set { distance matrices calculated with the distances dB and dE.
Figure 12 shows obtained con�gurations. We see here that the results are reasonable
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now, extremely similar to the results obtained with the Aitchison's distance { see Figure
11A, or to the original centered con�guration { see Figure 10.
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Figure 12: Results of Classical Scaling applied to Halimba data set { �rst two coordinates of the
resulting con�guration. A: dB distance (centered data set); B: dE distance (centered data set).

Table 3 and Table 4 presents the values of the stress coeÆcient in the case of Halimba
data set. We observe similar behavior to the Lyons West data set. In Table 3 we observe
that the accordance between di�erent matrices of distances is better after the centering
operation. The stress values shown in Table 4 con�rm that all measures considered
perform good results applied in the Classical Scaling procedures.

Table 3: Performance of relation between considered dissimilarity measures as measured by the stress
for Halimba data set.

Data set dA vs dM dA vs dE dA vs dE dB vs dE dB vs dE
before after before after

centering centering centering centering
Halimba 0:3297 0:9400 0:7080 0:4387 0:1247

Table 4: Performance of Classical Scaling applied to Halimba data set measured by the stress for
considered dissimilarity measures.

Data set dA dM dB dB dE dE
before after before after

centering centering centering centering
Halimba 8:0� 10�7 0:0487 3:1� 10�4 4:9� 10�4 2:4� 10�6 5:0� 10�6

4 CONCLUSIONS

Throughout examples of multidimensional scaling applied to real compositional data we
have shown
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� which measures of di�erence are compatible (Aitchison's distance, compositional
KL dissimilarity) with compositional nature of the data, and

� when and why sometimes also inappropriate, with compositional nature of the data
incompatible measures can give reasonable results.

With these examples we have con�rmed in practice the theoretical results on (un)suitability
of some concrete dissimilarity measures in cases when compositional data are considered.
We have shown that cases when inappropriate measures give reasonable results although
applied to compositional data are exceptional. Therefore the general conclusion is that
only the use of suitable measures (Aitchison's distance and/or compositional KL dissim-
ilarity) will give us adequate results of multidimensional scaling techniques in any case
and for any data set of compositions.

We believe that further deep studies are needed to develop all features of measures of
di�erence on compositional data in relation to applications in multidimensional scaling.
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