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Abstract. The sample space of compositional data is the open simplex. There-
fore, zeros in a compositional data set are identified either with below detection
limit values, or lead to a division of the data set into different subpopulations with
the corresponding lower dimensional sample space. Most multivariate data analysis
techniques require complete data matrices, thus calling for a strategy of imputa-
tion of zeros in the first case. Existing replacement methods of rounded zeros are
reviewed, and a new method is proposed, who’s properties are analyzed and illus-
trated. The method is applied in a hierarchical cluster analysis of compositional
data.

1 Introduction

Compositional data are by definition proportions of some whole. Thus, their
natural sample space is the open simplex and interest lies in the relative
behavior of the components. The open simplex is defined as (Aitchison, 1986)

SD:{(.’El,(EQ,...,.’ED)IZ(Ej>0;j:1,2,...,D;(E1+(E2+“‘+(ED:1}.

Any vector of positive components, y € §R£ , can be projected into the simplex
by the closure operation C(y) = (y1/>_ Y, Y2/>_Yjs---,yp/ . y;)". The only
operations known to induce a vector space structure on the simplex are the
perturbation operation, pox = C(piz1, pata, - ..,pprp)’, defined on SP x SP
and the power transformation, aox = C(x$, 2%, ...,7%)’, defined on R x SP.
Perturbation can be proven to be equivalent to translation in #° and power
transformation to the scalar product using the centered-logratio transfor-
mation (clr). This transformation has been defined by Aitchison (1986) as
cr(x) = (In(z1/g),In(z2/g),...,ln(zp/g))’, with g = (HZD:1 z;)'/P. Another
operation on the simplex, analogous to projection onto a smaller dimen-
sional space in R”, is obtained through the concept of subcomposition. It
is defined as xs = C(Sx), x € SP, where S is a (S x D) selecting ma-
trix with all elements zero except one in each row and at the most one in
each column. The subcomposition xg belongs to the simplex S°. A distance,
compatible with the previously defined operations, is Aitchison’s distance
da(x,x*) = d.(clr(x), clr(x*)), where x,x* € SP and d_ is the Euclidean dis-
tance. Its properties have been discussed in Martin-Ferndndez et al. (1998)
and in Aitchison et al. (1999).
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The “Achilles heel” of d,(x,x*) is the presence of zero values in the data,
as it is not possible to take the logarithm of zero. Zero values are present
in many applications as, for example, in a household budget spending noth-
ing on the commodity group “tobacco and alcohol”, or in a rock specimen
containing “no trace” of a particular mineral. In compositional data we dis-
tinguish two kinds of zeros: essential zeros and rounded zeros. The zero in
the household spending pattern is essential. The zero in a particular mineral
is usually a rounded zero, i. e. it indicates that no quantifiable proportion of
the mineral can be recorded according to the accuracy of the measurement
process. In hierarchical cluster analysis the presence of an essential zero in a
component is an indication that the observation belongs to a different group
and straightforward division of the sample is advisable. The principal prob-
lem refers to rounded zeros.

The purpose of this paper is to revise, from a theoretical point of view,
the additive method of replacement suggested by Aitchison (1986), whose
drawbacks have been described from an empirical point of view in Tauber
(1999), and to propose a new method of replacement of zeros in compositional
data. First, we present the solution proposed by Aitchison (1986). Next, we
summarize the most usual non-parametric approaches for missing values with
non-compositional data and then we propose a new method of zero replace-
ment. Finally, we present an example where the proposed method is applied
to a compositional data set.

2 Additive replacement strategy

Aitchison (1986) suggests that an observation x € SP containing C rounded
zeros can be replaced by a new observation r € SP without zeros according
to the following replacement rule:

UCHVD=C) " if ;=0 ,

rj = O (1)
a:j—(D%l), ifz; >0,

where § is smaller than a given threshold derived from the measurement
process.

Note that the constant-sum-constraint of compositional data forces to
modify both the zero and the non-zero values. Moreover, the imputed value
r; depends not only on ¢ but also on the dimension D and the number C of
zeros. Note also that a different §; could be considered for every component
z; leading to a slightly more complicated expression.

Due to the fact that the transformation (1) of non-zero values is additive,
it holds that ry/r # z/z;, for x, x; non-zero values, and the value of
the new ratios r/r; depends on &. Therefore, Aitchison’s distance between
two replaced observations is extremely sensitive to changes in ¢ as illustrated
empirically by Tauber (1999).
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3 Replacement strategies for non-compositional data

Let Y be a data set with missing values in real space . If the goal is to
perform a cluster analysis based on a hierarchical clustering method using the
Euclidean distance, it is necessary to complete first the matrix of distances
between observations. Several strategies have been suggested in the literature
for that purpose. The one by Krzanowski (1988) can be synthesized as follows:
(i) omit any variable that has a missing value when computing the distance
between two observations and work only with those variables that have all
values present for both the observations concerned; (ii) if the previous step
means working with S variables instead of D, inflate the resulting distance by
a factor D/S. To see that this strategy is not suitable for compositional data,
consider the following example: given three compositional observations x =
(0,0.8,0.2), x* = (0.95,0.04,0.01), and x" = (0.06,0.76,0.18), the strategy
of Krzanowski implies to consider the subcompositions formed by the second
and third variables: xg = (0.8,0.2), xg* = (0.8,0.2), and xg' = (0.81,0.19).
Assuming that the zero in sample x is actually a very small positive value, we
expect x and X' to be more similar than x and x*. Nevertheless, we obtain
that d,(xs,xs*) = 0 and d,(xs,xs") = 0.07.

The most common strategy to complete the matrix of distances is to
employ “imputation”, i. e. the insertion of an estimate for each missing value,
thereby completing the data set, and then calculate the matrix of distances.
When the missing values are actually censored data, that is, when the values
for some variables are reported as “less than” a given threshold value, a simple
imputation can be considered. For a “small” proportion of “less than” values
(not more than 10%) a simple-substitution method using 0.55 of the threshold
value is suggested in Sandford et al. (1993). More general imputation methods
are exposed in Little and Rubin (1987).

All these imputation methods have one thing in common: the canonical
projection II(y) on the non-missing variables of observation y is identical to
the same projection II(z) of the replaced observation z. Also, if y and y*
have “common” missing values, i. e. missing values on the same variables,
it holds that y; —y7 = z; — 2} for y;, y; non-missing values and zj, z7 the
corresponding replacement. Furthermore, if the imputation method assigns
the same replacement value to every missing component y; of the two ob-
servations, then d.(z,z*) does not depend on the imputated values and it is
identical to the Euclidean distance between the projections d. (II(y), I(y*)).
With the above features in mind, let us proceed to define a suitable replace-
ment method for zeros in compositional data.

4 Multiplicative replacement strategy

Let be x € SP and assume it has C zeros. We propose to replace x with an
observation r € S without zeros using the expression
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_ (Sj, if Tj = 0, 9
T3 (1 = Ty o 00), i1 >0, (2)

where §; is the imputated value on the component z;. Following Sandford et
al. (1993), whenever §; is equal to 0.55 of the threshold determined from the
measurement process corresponding to component x;, a simple-substitution
in the simplex is obtained.

The multiplicative modification of non-zero values in (2) has the following
desirable properties not satisfied by (1):

1. It is “natural” in the sense that, if the imputated values d; in an observa-
tion x are equal to the “true” censored values, then r recovers the “true”
observation.

2. It is coherent with the basic operations in the simplex, i. e. if a selecting
matrix S of non-zero components of observation x is considered, and
xg = C(Sx) is the subcomposition obtained, denoting by rg = C(Sr)
the subcomposition derived from the replacement vector, the following
properties hold:

(a) perturbation invariance — for all p € SP, (por)s = (p o X)s;
(b) power transformation invariance — for all @ € R, (aor)s = (@ ox)s;
(¢c) subcomposition invariance — xg =rg.

3. When x and x* have “common” zero values, and the replaced observa-
tions r and r* are obtained using identical imputation values d; = 47,
then
(a) rj/r; = zj/x} for all non-zero values z;, 7}, and d,(r,r*) does not

depend on the imputated values;
(b) dg(r,r*) is not equal to dy(xs,x%5), but the following equality holds:

2

C j
2 *\ __ 72 * _ =L
da(r,r)—da(xs”‘S”D(D—C) Zlog(“") ’

*
z;>0 J

where C is the number of common zeros in x and x*.

5 Example

Consider the Glacial data set included in Aitchison (1986). It has 92 sam-
ples of pebbles of glacial tills sorted into four categories: red sandstone, gray
sandstone, crystalline, and miscellaneous. The components zy, x>, x3, and
x4 represent the corresponding percentages by weight of these four cate-
gories. Zeros appear in 41 out of the 92 observations either in component
x3 or in x4. We assume the zeros to be non-essential zeros, 7. e. rounded
zeros. Before applying a hierarchical clustering algorithm, the zeros have to
be replaced. For comparison purposes, we consider the additive replacement
approach proposed by Aitchison (1) and the multiplicative replacement (2)
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proposed in this paper, combined with two different § values 4; = 0.001 and
62 = 0.0005. As a consequence, four data sets without zeros are obtained:
R 1 using method (1) and d1; Ri using the same method but d2; Ra
using method (2) and d;; and Ry 2 using method (2) and d2. The cluster-
ing algorithm used has been Ward’s method adapted to compositional data
(Martin-Fernandez et al., 1998), resulting in two distinct groups in all four
cases. Comparing the two groups obtained in each case, the following facts
can be observed: classifications of Ry ; and Ry ; are extremely coincident, as
only one observation is assigned to a different group; classifications of Ry ;
and Ry > are identical; and classification of R 5 is appreciably different of the
rest, as 17 observations are assigned to a different group when compared to
R 1. This indicates that with the multiplicative replacement (2) the matrix
of distances is more stable with respect to changes of the imputated values
dj. But, when the imputated values tend to zero the two replacement sets
tend to give us the same results. If we take § = 10~8 in the two cases and we
apply Ward’s method, we obtain 4 distinct groups (see Figure 1).

Group G1 corresponds to the observations without zeros, group G2 corre-
sponds to observations with zero only in component x3, group G3 corresponds
to observations with zero only in component x4, and group G4 corresponds to
observations with zeros in both components. These groups could be obtained
if initially we assume the zeros as essential zeros rather than rounded zeros.

clr(X3)

clr(X4)

clr(X1)
clr(X2)

G2
$§% # G4

%

#

Fig. 1. Biplot of the compositional data set obtained by replacement (2) when
§ = 1078. Labels G1,G2,G3, and G4 represents the four groups.
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6 Conclusions

In this paper, a multiplicative zero replacement method for compositional
data is defined. This replacement is coherent with the basic operations which
provide the simplex with a vector space structure. In particular, the multi-
plicative approach is “natural” in the sense that it recovers the “true” obser-
vation if replacement values are identical to the missing values.

Acknowledgments

This research has been partially supported by the University of Girona through
the project UdG98/32, and by the Direccién General de Enseflanza Superior
(DGES) of the Spanish Ministry for Education and Culture through the
project PB96-0501-C02-01.

References

AITCHISON, J. (1986): The Statistical Analysis of Compositional Data. Chapman
and Hall, New York (USA), 416 p.

AITCHISON, J., BARCELO-VIDAL, C., MARTIN-FERNANDEZ, J.A., and
PAWLOWSKY-GLAHN, V. (2000): Logratio analysis and compositional dis-
tance. Mathematical Geology, (in press).

KRZANOWSKI, W.J. (1988): Principles of Multivariate Analysis. A User’s Per-
spective, Clarendon Press, Oxford (GB), 563 p. (reprinted 1996).

LITTLE, R.J.A and RUBIN, D.B. (1987): Statistical Analysis with Missing Data.
John Wiley & and Sons, New York (USA), 278 p.

MARTIN-FERNANDEZ, J.A., BARCELO-VIDAL, C., and PAWLOWSKY-
GLAHN, V. (1998): A Critical Approach to Non-parametric Classification of
Compositional Data. In: A. Rizzi, M. Vichi, and H.-H. Bock (Eds.): Advances
in Data Science and Classification. Springer, Heidelberg, pp. 49-56.

SANDFORD, R.F, PIERSON, C.T., and CROVELLI, R.A. (1993): An Objective
Replacement Method for Censored Geochemical Data. Mathematical Geology,
Vol. 25:1, pp 59-80.

TAUBER, F. (1999): Spurious clusters in Granulometric Data Caused by Logratio
Transformation. Mathematical Geology, Vol. 31:5, pp. 491-504.



