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2 Dpto. Matemáticas, Universidad de Extremadura, Escuela Politécnica, E-10071,
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Summary. Existing kernels for compositional data cannot apply the common sim-
plifications of the bandwidth matrix. In this work new kernel density estimation
methods are proposed. These methods incorporate recent advances from log-ratio
methodology and bandwidth matrix selection theory. We present examples where
the behaviour of the proposed approach is illustrated.
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1 Introduction

The sample space of compositional data ([Ait86]) is the simplex SD defined as
SD = {x = [x1, ..., xD] : xi > 0, x1 + ... + xD = c}, where c can be 1, 100, 106

or any other constant depending on the units of measurement. As it was stated
during the last Compositional Data Workshop ([MB05]) this kind of data appears in
many disciplines: Archaeometry, Geology, Economy, Biomedical Research, and Space
Research. Compositional observations are proportions of some whole and therefore
positive and of constant sum. After [Ait86] and with general agreement, one accepts
that compositional data reflect only relative magnitude, and thus interest lies in
relative - and not absolute - changes. The key question here is which metric could
be appropriate for this kind of data. The usual Euclidean metric measures absolute
changes, whereas relative changes can be measured using some logarithmic scale
([ABMP00]).

In [AL85] two multivariate kernel methods of density estimation for composi-
tional data are introduced: Dirichlet and additive logistic-normal (aln). The authors
recommend selecting the aln kernel rather than the Dirichlet except “if there is the
least suspicion of sparseness in the data”. In addition, when the data set has ob-
servations with zero values they recommend replace in advance the rounding zeros
by a small value. As is stated by the authors, since the aln kernel is based on the
additive log-ratio (alr) transformation we cannot use the common simplifications of
the bandwidth matrix ([WJ95], p. 91). However, nowadays we can take advantage of
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new, just developed, full bandwidth matrix selection methods ([DH03],[DH05]) that
were not available when the paper of [AL85] was published.

In this work new kernel density estimation methods for compositional data are
proposed. These methods incorporate recent advances from log-ratio methodology
and bandwidth matrix selection theory. We first introduce basic concepts related
to the vector space structure of the simplex and the ilr transformation. Proceed
afterwards with the new proposals for the kernel density estimation methods. Finally,
we present examples where the behaviour of the proposed approach is illustrated.

2 Recent developments on compositional data analysis

The closure operator C is defined by C(w) = [w1/
∑

wj , . . . , wD/
∑

wj ], where w ∈
RD

+ . The perturbation operation, x⊕ x∗ = C [x1x
∗
1, . . . , xDx∗D], defined on SD ×SD,

and the power transformation, α ⊗ x = C[xα
1 , . . . , xα

D], defined on R × SD induce a
vector space structure in the simplex. Then, the perturbation difference

x⊕ x∗−1
= C [x1/x∗1, . . . , xD/x∗D]

allows to introduce the centring operation. To better understand the perturbation
difference operation it is useful to establish a parallelism with the vector subtraction
operation of the real space. An interesting property is that the neutral element is
the composition e = [1/D, ..., 1/D] which is the geometric centre of the simplex and
which has same role than the origin of coordinate axes in real space.

In [Ait86] the additive log-ratio (alr) and the centered log-ratio (clr) transfor-
mations are introduced:

alr(x) =
[
ln(x1/xD), . . . , ln(xD−1/xD)

]
,

clr(x) =
[
ln(x1/g(x)), . . . , ln(xD/g(x))

]
,

where g(x) = (x1 · · ·xD)1/D stands for the geometric mean of the composition x.
One must proceed with caution when the alr transformation is applied because is
asymmetric in the components. We must verify that our statistical technique is
invariant under permutations of the components. On the other hand the clr trans-
formation has the weakness that the covariance matrix of the transformed data set
is singular. In the literature the alr transformation is mainly applied in parametric
contexts and the clr transformation is mostly used in nonparametric studies. To
avoid above difficulties the isometric log-ratio transformation (ilr) is introduced in
[EPMB03]:

ilr(x) = y = [y1, . . . , yD−1] ∈ RD−1, where yi =
1√

i(i + 1)
ln

(∏i

j=1
xj

(xi+1)i

)
.

The alr and clr transformations are more interpretable than the ilr. Nevertheless,
the ilr transformation is useful when some technique as the transformation method
([BA97], p. 14) is applied. This method is recommended for a data with bounded
support, for example the simplex. In essence, the transformation method consists
of estimating the density of the transformed data and then transform back to the
original space.
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Compositional variables frequently take null values and dealing with log-ratios
excludes dealing with zeros. Therefore, a strategy is needed on how to deal with
zeros in a given data set. In [AL85] (p. 133) a general procedure for replacing the
zero values in a composition is recommended. Recently, a new replacement method
has overcome this procedure ([MBP03]): consider a composition x = [x1, . . . , xD] ∈
SD containing rounded zeros. Then, x can be replaced by a new composition r =
[r1, . . . , rD] ∈ SD without zeros according to the following replacement rule:

rj =





δj if xj = 0,(
1−

∑
{xk =0} δk

c

)
xj if xj > 0,

where δj is a small value less than a given threshold for the component xj .

3 New strategies for compositional kernels

Following [AL85] the Dirichlet class ∆D−1(α) with density function

∆(x|α) =
Γ (α1 + . . . + αD)

Γ (α1) . . . Γ (αD)
xα1−1

1 . . . xαD−1
D ,

can be considered for defining a kernel K(x|X, h) for x ∈ SD centered at X ∈ SD,
where h is the smoothing factor. The key question here is the centering operation.
In [AL85] the authors suggest taking the kernel K(x|X, h) = ∆(x|j+(1/h)X) where
j is the D-vector of units. It is easy to proof that for α = j + (1/h)X the mode of
the Dirichlet distribution is at X. Nevertheless, it is also clear that for this α the
concentration of the distribution about the mode depends on the values of X. In
essence, this fact causes the different behaviour between the Dirichlet and the aln
kernels in relation to the sparseness in the data. This different behaviour was stated
in [AL85] from an empirical point of view but without corresponding theoretical
support. In order to avoid this effect we propose a different strategy. In real space
it is natural to adopt a kernel centred on the origin which evaluates the vector
difference x − X. Analogue strategy for compositional data consists of adopting a
kernel centred on the geometric centre of the simplex e = [1/D, . . . , 1/D] and such
that evaluates the perturbation difference x⊕X−1. To achieve this we propose taking
the kernel

K(x|X, h) = ∆(x⊕X−1| 1

hD
j),

where j is the D-vector of units. Here the smoothing factor h is directly related with
the concentration of the distribution because the larger h is, the less concentrated
the distribution about the mode.

Actually, most of the researchers deal with kernels based on the standard multi-
variate normal density in real space. In addition, the most relevant results modelling
compositional data analysis have been achieved assuming normal distribution for the
transformed data. In this work we focus our attention to the transformation method.
Future research will analyze the behaviour of the Dirichlet kernel, and the modified
kernel method suggested in [BA97] (p. 15).
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Following analogue strategy as for the additive logistic-normal (aln) class of
distributions ([AL85], p. 130) the isometric logistic-normal (iln) class ID−1(ξ, Ψ)
([Mat03]) can be defined with density function

ID−1(ξ, Ψ) =
1√

D x1 . . . xD

φ(y|ξ, Ψ),

where φ(y|ξ, Ψ) is the density of the normal ND−1(ξ, Ψ) distribution evaluated at
y = ilr(x), the isometric log-ratio transformed vector. The transformation method
([BA97], p. 14) is considered in combination with the iln class and we propose the
iln kernel on SD defined by

K(x|X, H) =
1√

D x1 . . . xD

φ(y|Y, H),

where Y = ilr(X) and H is the bandwidth matrix. This iln kernel is equivalent to
ilr-transform the compositional data set; then, obtain density estimates in RD−1

using a multivariate kernel φ(y|Y, H) with some suitable bandwidth matrix H; and
finally, transform back using the ilr-inverse transformation to the simplex. In relation
to the centring operation, it is easy to state that the iln kernel verifies K(x|X, H) =
K(x⊕X−1|e, H). Note that we have an analogue property in real space in relation
to the vector subtraction operation.

In [AL85] the authors conclude that the common simplifications of the band-
width matrix H are impossible when the aln kernel is used. The problem is that
the results are not invariant under permutations of the components. One only can
work with a bandwidth matrix proportional to the sample covariance matrix of the
alr-transformed data set. In real space, [WJ95] (p. 106) state that this bandwidth
matrix is appropriate in the case of multivariate normal data and not for general
density shapes. Consequently, the aln kernel is appropriate in the case of aln class
and not for other density shapes. With our strategy, using the iln kernel, all param-
eterisations of the bandwidth matrix H are feasible.

4 Examples

In [WJ95] (p. 92) the authors consider F the class of symmetric, positive definite
(D−1)×(D−1) matrices; D the subclass of diagonal positive definite matrices; and
S the subclass {h2Id : h > 0}, where Id is the identity matrix. In our strategy, if
H ∈ S then H = h2Id and we are working with circles in the ilr-transformed space.
If we take H ∈ D then H = diag(h2

1, . . . , h
2
D−1) and our kernels are ellipses such

that their axes are parallel to the coordinate directions in the ilr-transformed space.
For the full bandwidth matrix class F the axes of the ellipses in the ilr-transformed
space are not parallel to the coordinate axes. In order to illustrate the behaviour
of the iln kernel some simple cases for the three different parameterisations of the
bandwidth are plotted. Figure 1 respectively shows the contour plots for H ∈ S,
H ∈ D and H ∈ F . Figure 1A corresponds to the circles in the ilr-transformed
space and Figure 1B shows these contours plots transformed back in the simplex
S3. Figures 1C and 1D show the contour plots for H ∈ D. Observe that the axes of
the ellipses are parallel to the coordinate axes. Figures 1E and 1F show the contour
plots for H ∈ F . In this case - full bandwidth matrix - the ellipses have their axes
non parallel to the coordinate axes.
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Fig. 1. Contours plots of iln kernels for D = 3: (Left) in the ilr-space; (Right) in
the Ternary diagram.
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Having proposed the iln kernel we analyse its application to the three-composition
AFM of 23 aphyric Skye lavas ([AL85]; [Ait86], p. 360). The variables A, F, M re-
spectively stand for the relative proportions of alkali or Na2+K2O, Fe2O3, and MgO.
Figure 2A shows the data set Skye Lavas in ternary diagram. In Figure 2B the corre-
sponding ilr-transformed data set is plotted. Observe that the points (Fig. 2B) show
a linear pattern in the ilr-space and this pattern is not parallel to the coordinate
axes. This pattern appears in the ternary (Fig. 2A) as a curved line. Considering
different parameterisations of the bandwidth matrix, two different methods for se-
lecting the bandwidth are applied: 2-stage Plug-In (PI) ([DH03]) and Least Squares
Cross Validation (LSCV) ([DH05]). For the sake of an easier readability we do not
reproduce here all the results. We present here (Figures 2C, 2D and 3) only the
results produced by the LSCV method for a diagonal bandwidth matrix H ∈ D.
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Fig. 2. Kernel Density Estimation for Skye lavas data set: (A) Data in the ternary
diagram (B) transformed data in the ilr-space; (C) Contour plots in the ilr-space;
(D) Density estimates in the ilr-space.
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As was suggested by [WJ95] (p. 108), although the F parameterisation is rec-
ommended for a data not oriented parallel to the coordinate axes, in this example
we state (Figure 3) that using H ∈ D we can obtain reasonable results.
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Fig. 3. Kernel Density Estimation for Skye lavas data set: contour plots in the
ternary diagram.
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[MB05] Mateu-Figueras, G., Barceló-Vidal, C.: Eds., Proceedings of the Second
Com-positional Data Analysis Workshop (CODAWORK’05), October 19-
21, University of Girona (Spain), CD-ROM, ISBN: 84-8458-222-1 [avail-
able in http://ima.udg.es/Activitats/CoDaWork05/] (2005)

[Mat03] Mateu-Figueras, G.: Distribution Models on the Simplex. Ph.D.
thesis, Universitat Politècnica Catalunya, Barcelona, [available in
www.tdcat.cesca.es/index tdx an.html], ISBN: 84-688-6734-9, 202p.
(2003)

[WJ95] Wand, M.P., Jones, M.C.: Kernel Smoothing. Chapman & Hall, London,
212p. (1995)


