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Poster presentation

1 Introduction

Formally, a composition is a vector x = [x1, . . . , xD] such that xj > 0,
j = 1, . . . , D, subject to the constraint x1 + . . .+xD = 1. The sample space
of compositions is the unit simplex SD. Its peculiarities prevent us from
applying the standard multivariate statistical techniques designed for real
spaces. Log-ratio methodology (Aitchison, 1986) provides the one to one
correspondences between the simplex and the real space, opening up the
whole of unconstrained real space multivariate data analysis. The results
can then be translated back into the compositions of the simplex.
Sometimes in practice some parts take rounded zero values or trace ze-
ros, making it impossible to use the log-ratio methodology. From a non-
parametric point of view, the multiplicative replacement (MR) method
(Mart́ın-Fernández et al., 2003) replaces the zeros by a small number pro-
vided by the analyst. In this work, a computationally feasible parametric
method based on a modification of the EM-algorithm is proposed. Its per-
formance is analyzed by Monte Carlo simulation.

2 aln : multivariate log-ratio normal model

Aitchison (1986) introduces the additive log-ratio transformation alr(x) =[
ln x1

xD
, . . . , xD−1

xD

] ∈ RD−1. Since the alr transformation is asymmetric in
the components, one must verify that the applied statistical technique is
invariant under permutations of the components. In addition, the alr trans-
formation is not an isometry. To avoid the above difficulties, an isometric
log-ratio transformation (ilr) is introduced (Egozcue et al., 2003)

ilr(x) = y = [y1, . . . , yD−1] ∈ RD−1, where yi =
1√

i(i + 1)
ln

(∏i
j=1 xj

(xi+1)i

)
,
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which allows to apply any multivariate technique to the coordinates from an
orthonormal basis. In our strategy, the original zeros in the compositional
data set X are transformed in missing data in Y = alr(X). The main idea
is to impute the missing part of Y and transform back from RD−1 to SD.
We select the alr transformation rather than ilr transformation because
with the alr transformation the information about the detection limit can
be easily incorporated to the alr-transformed data model. Furthermore,
the consistency of results is guaranteed (Aitchison, 1986) when inference
is based on the likelihood of the additive logistic normal model. Recall
that a random composition vector x ∈ SD is distributed according to an
additive logistic-normal (aln) model (Aitchison, 1986) when y = alr(x) is
distributed according to a (D − 1)-dimensional normal model with mean
vector µ and covariance matrix Σ.

3 Modified EM-algorithm in combination with aln
model

A rounded zero occurs when xij < γj , where γj denotes the detection limit
for the component xj . When this relationship is alr-transformed into the
real space, a missing data in Y is obtained when yij < ψij . Note that here
ψij = ln(γj/xiD), being xD a part without zero values. On the tth iteration
of the modified EM-algorithm (mEM) a missing value in the position (i, j)
of Y is imputed (Palarea-Albaladejo et al., 2007a, 2007b) using the equation

E[yj |y−j , yj < ψj , θ
(t)] = yT

−jβ − σj

φ

(
ψj−yT

−jβ

σj

)

Φ
(

ψj−yT
−j

β

σj

) ,

where θ(t) denotes the tth estimated parameters vector θ = (µ, Σ) of the
aln model; φ and Φ the density and the distribution function, respectively,
of the standard normal distribution; σ2

j denotes the variance of yj , and
β is the vector of coefficients of the linear regression of yj on y−j . Note
that imputing by this way the method takes into account the informa-
tion contained in the observed variables as much as the information about
the detection limit. The EM algorithm generates a sequence {θ(t)} which
converges iteratively (Dempster et al., 1977) to the maximum-likelihood
estimate of θ.

4 Simulation-based numerical results

Initially, 1000 data sets of size 300× 5 are generated from a 5-part random
composition. The compositional geometric mean of the random composi-
tion c is given by g(c) = [0.027, 0.045, 0.201, 0.605, 0.122], and its total
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FIGURE 1. Replacement methods distortion: (a) MSD. (b) STRESS.

variability, totvar(c), is equal to 3.996. The value of the geometric mean
ensures that the fourth part takes the highest values, and parts 1 and 2 take
the smallest values. In addition, the slightly high variability introduced en-
sures that the simulated data sets not are too similar. These data sets are
free of zeros. Following that, small values in the compositions are changed
by zero. In this way, a range of 10 realistic detection limits is considered:
from 0.25% to 2.5% with increments of 0.25%. Thus, in total, 10 000 data
sets of compositional data with rounded zeros have been generated. Next,
the data sets are sorted in ascending order according to the proportion
of zeros and the MR and mEM strategies to replace them are applied.
For multiplicative replacement, the zeros are replaced by the 65% of the
corresponding detection limit. MSD and the STRESS

MSD =
∑300

i=1 d2
a(ci, ri)

300
and STRESS =

∑
i<j(da(ci, cj)− da(ri, rj))2∑

i<j d2
a(ci, cj)

,

evaluate the distortion between the data set C and the completed data set
R. By da we denote the Aitchison distance between two compositions x
and x∗ defined as the Euclidean distance between the vectors ilr(x) and
ilr(x∗).
Figure 1 shows the patterns followed by the MR and mEM methods in
relation to the proportion of zeros in the samples by means of the average
of the MSD and STRESS measures (continuous lines), ± their respective
standard deviations (dotted lines), for different intervals of percentages of
zeros. When the number of zeros grown the performance of mEM overcome
that of MR. Since the MR method replaces all zeros by the same value, it
tends to underestimate the variability in the data sets (figure 2). For all
samples, the differences between the log-ratio total variabilities for both,
the completed data set R and the data set C, is plotted. The mEM method
also tends to underestimate the variability since it replaces zeros with an
expected value, but this effect is appreciably smaller. With compositions
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FIGURE 2. Sample variability subestimation.

of higher dimensions the expected result is that the mEM algorithm works
better, since the information available to replace zeros by suitable values
will increase. The same result will happen if the sample size is enlarged.
Therefore, the yield of the mEM algorithm is bound by the size of the data
matrices, as is common in all parametric strategies.
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